409 research outputs found

    Host Galaxies of Young Dust-Reddened Quasars

    Get PDF
    We present results on a multiwavelength campaign to identify the nature of dust-reddened Type 1 quasars. These quasars were selected by matching FIRST, 2MASS and very red optical counterparts with r' − K > 5. We find a very high fraction of Low Ionization Broad Absorption Line Quasars (LoBALs) among AGN selected with this method, perhaps a sign of quasar feedback. From X-ray observations and Balmer decrement measurements, the obscuring dust is most likely located in a cold absorber such as the host galaxy, rather than from a torus near the AGN. Hubble ACS imaging of a sub-sample of these sources showed a very high fraction of interacting and merging systems. The quasars appear to be very young in which dust from the merging galaxies is still settling in. Spitzer IRS and MIPS data show star formation signatures and deep Silicate absorption features in these objects, but overall the quasar is the dominant source in the Mid-infrared

    Some Pattern Recognition Challenges in Data-Intensive Astronomy

    Get PDF
    We review some of the recent developments and challenges posed by the data analysis in modern digital sky surveys, which are representative of the information-rich astronomy in the context of Virtual Observatory. Illustrative examples include the problems of an automated star-galaxy classification in complex and heterogeneous panoramic imaging data sets, and an automated, iterative, dynamical classification of transient events detected in synoptic sky surveys. These problems offer good opportunities for productive collaborations between astronomers and applied computer scientists and statisticians, and are representative of the kind of challenges now present in all data-intensive fields. We discuss briefly some emergent types of scalable scientific data analysis systems with a broad applicability.Comment: 8 pages, compressed pdf file, figures downgraded in quality in order to match the arXiv size limi

    Quantum reference frames and deformed symmetries

    Get PDF
    In the context of constrained quantum mechanics, reference systems are used to construct relational observables that are invariant under the action of the symmetry group. Upon measurement of a relational observable, the reference system undergoes an unavoidable measurement "back-action" that modifies its properties. In a quantum-gravitational setting, it has been argued that such a back-action may produce effects that are described at an effective level as a form of deformed (or doubly) special relativity. We examine this possibility using a simple constrained system that has been extensively studied in the context of quantum information. While our conclusions support the idea of a symmetry deformation, they also reveal a host of other effects that may be relevant to the context of quantum gravity, and could potentially conceal the symmetry deformation.Comment: 11 pages, revtex. Comments are welcom

    Discovery of a Probable Physical Triple Quasar

    Get PDF
    We report the discovery of the first known probable case of a physical triple quasar (not a gravitational lens). A previously known double system, QQ 1429-008 at z = 2.076, is shown to contain a third, fainter QSO component at the same redshift within the measurement errors. Deep optical and IR imaging at the Keck and VLT telescopes has failed to reveal a plausible lensing galaxy group or a cluster, and moreover, we are unable to construct any viable lensing model which could lead to the observed distribution of source positions and relative intensities of the three QSO image components. Furthermore, there are hints of differences in broad-band spectral energy distributions of different components, which are more naturally understood if they are physically distinct AGN. Therefore, we conclude that this system is most likely a physical triple quasar, the first such close QSO grouping known at any redshift. The projected component separations in the restframe are ~ 30 - 50 kpc for the standard concordance cosmology, typical of interacting galaxy systems. The existence of this highly unusual system supports the standard picture in which galaxy interactions lead to the onset of QSO activity.Comment: Submitted to ApJL, LaTeX, 13 pages, 4 eps figures, all include

    Triply Special Relativity

    Full text link
    We describe an extension of special relativity characterized by {\it three} invariant scales, the speed of light, cc, a mass, Îș\kappa and a length RR. This is defined by a non-linear extension of the Poincare algerbra, A\cal A, which we describe here. For R→∞R\to \infty, A\cal A becomes the Snyder presentation of the Îș\kappa-Poincare algebra, while for Îș→∞\kappa \to \infty it becomes the phase space algebra of a particle in deSitter spacetime. We conjecture that the algebra is relevant for the low energy behavior of quantum gravity, with Îș\kappa taken to be the Planck mass, for the case of a nonzero cosmological constant Λ=R−2\Lambda = R^{-2}. We study the modifications of particle motion which follow if the algebra is taken to define the Poisson structure of the phase space of a relativistic particle.Comment: 13 page

    2+1 gravity and Doubly Special Relativity

    Full text link
    It is shown that gravity in 2+1 dimensions coupled to point particles provides a nontrivial example of Doubly Special Relativity (DSR). This result is obtained by interpretation of previous results in the field and by exhibiting an explicit transformation between the phase space algebra for one particle in 2+1 gravity found by Matschull and Welling and the corresponding DSR algebra. The identification of 2+1 gravity as a DSRDSR system answers a number of questions concerning the latter, and resolves the ambiguity of the basis of the algebra of observables. Based on this observation a heuristic argument is made that the algebra of symmetries of ultra high energy particle kinematics in 3+1 dimensions is described by some DSR theory.Comment: 8 pages Latex, no figures, typos correcte

    New approaches to object classification in synoptic sky surveys

    Get PDF
    Digital synoptic sky surveys pose several new object classification challenges. In surveys where real-time detection and classification of transient events is a science driver, there is a need for an effective elimination of instrument-related artifacts which can masquerade as transient sources in the detection pipeline, e.g., unremoved large cosmic rays, saturation trails, reflections, crosstalk artifacts, etc. We have implemented such an Artifact Filter, using a supervised neural network, for the real-time processing pipeline in the Palomar-Quest (PQ) survey. After the training phase, for each object it takes as input a set of measured morphological parameters and returns the probability of it being a real object. Despite the relatively low number of training cases for many kinds of artifacts, the overall artifact classification rate is around 90%, with no genuine transients misclassified during our real-time scans. Another question is how to assign an optimal star-galaxy classification in a multi-pass survey, where seeing and other conditions change between different epochs, potentially producing inconsistent classifications for the same object. We have implemented a star/galaxy multipass classifier that makes use of external and a priori knowledge to find the optimal classification from the individually derived ones. Both these techniques can be applied to other, similar surveys and data sets

    Probing Lorentz Violating (Stringy) Quantum Space-Time Foam

    Full text link
    Quantum Space Time may be characterized by a plethora of novel phenomena, such as Lorentz violations and non-trivial refractive indices, stochastic metric fluctuation effects leading to decoherence of quantum matter and non-commutativity of space-time coordinates. In string theory, which is one of the major approaches to quantum gravity, such coordinate non-commutativities arise naturally in many instances. In the talk I review one such instance, which arises in the modern context of D-brane defects in the background space time, over which string matter propagates. This serves as a prototype of space-time foam in this context. I chose this model, over many others, because it may actually have some unique features that can be falsified experimentally either by means of high-energy astrophysical observations or in some particle-interferometers, such as neutral meson factories. In particular, the model may explain the recent observations of the FERMI Gamma-Ray Telescope on delayed emission of 30 GeV photons from a distant Gamma-Ray-Burst 090510, in agreement with previous observations from the MAGIC and HESS Telescopes, but can also lead to falsifiable predictions for quantum foam effects in forthcoming upgrades of certain "particle interferometers", such as neutral meson factories.Comment: 12 pages Latex, uses special macros, two eps figures incorporated. Invited talk at XXV Max Born Symposium, Physics at the Planck scale, Wroclaw (Poland), 29th June- 3rd July 2009. To appear in the Proceeding

    Harmonic BRST Quantization of Systems with Irreducible Holomorphic Boson and Fermion Constraints

    Full text link
    We show that the harmonic Becchi-Rouet-Stora-Tyutin method of quantizing bosonic systems with second-class constraints or first-class holomorphic constraints extends to systems having both bosonic and fermionic second-class or first-class holomorphic constraints. Using a limit argument, we show that the harmonic BRST modified path integral reproduces the correct Senjanovic measure.Comment: 11 pages, phyzz
    • 

    corecore