146 research outputs found

    Book Review: Mythic Imagination Today: The Interpretation of Mythology and Science by Terry Marks-Tarlow

    Get PDF
    Terry Marks-Tarlow interprets mythology and science as endless curiosity about the workings of the Universe, combing with humans’ creative urges to transform inner and outer worlds. The author perceives mythology as a universal product of the human imagination in interaction with the physical and social world, driven by the urge to communicate with others symbolically and make meaning out of life experiences. Moreover, Marks-Tarlow studied the origins of a human story within the social brain, mythmakers, and myths from multiple cultures. At the same time, she explored how contemporary sciences of chaos, complexity theories, and fractal geometry unite with ancient wisdom. The origins of the ‘psyche’ and ‘psychology’ concepts were unpacked in detail through the ancient Greek myth of Psyche and Ero

    Discrete localized modes supported by an inhomogeneous defocusing nonlinearity

    Full text link
    We report that infinite and semi-infinite lattices with spatially inhomogeneous self-defocusing (SDF)\ onsite nonlinearity, whose strength increases rapidly enough toward the lattice periphery, support stable unstaggered (UnST) discrete bright solitons, which do not exist in lattices with the spatially uniform SDF nonlinearity. The UnST solitons coexist with stable staggered (ST) localized modes, which are always possible under the defocusing onsite nonlinearity. The results are obtained in a numerical form, and also by means of variational approximation (VA). In the semi-infinite (truncated) system, some solutions for the UnST surface solitons are produced in an exact form. On the contrary to surface discrete solitons in uniform truncated lattices, the threshold value of the norm vanishes for the UnST solitons in the present system. Stability regions for the novel UnST solitons are identified. The same results imply the existence of ST discrete solitons in lattices with the spatially growing self-focusing nonlinearity, where such solitons cannot exist either if the nonlinearity is homogeneous. In addition, a lattice with the uniform onsite SDF nonlinearity and exponentially decaying inter-site coupling is introduced and briefly considered too. Via a similar mechanism, it may also support UnST discrete solitons, under the action of the SDF nonlinearity. The results may be realized in arrayed optical waveguides and collisionally inhomogeneous Bose-Einstein condensates trapped in deep optical lattices. A generalization for a two-dimensional system is briefly considered too.Comment: 14 pages, 7 figures, accepted for publication in PR

    Interface solitons in one-dimensional locally-coupled lattice systems

    Full text link
    Fundamental solitons pinned to the interface between two discrete lattices coupled at a single site are investigated. Serially and parallel-coupled identical chains (\textit{System 1} and \textit{System 2}), with the self-attractive on-site cubic nonlinearity, are considered in one dimension. In these two systems, which can be readily implemented as arrays of nonlinear optical waveguides, symmetric, antisymmetric and asymmetric solitons are investigated by means of the variational approximation (VA) and numerical methods. The VA demonstrates that the antisymmetric solitons exist in the entire parameter space, while the symmetric and asymmetric modes can be found below some critical value of the coupling parameter. Numerical results confirm these predictions for the symmetric and asymmetric fundamental modes. The existence region of numerically found antisymmetric solitons is also limited by a certain value of the coupling parameter. The symmetric solitons are destabilized via a supercritical symmetry-breaking pitchfork bifurcation, which gives rise to stable asymmetric solitons, in both systems. The antisymmetric fundamental solitons, which may be stable or not, do not undergo any bifurcation. In bistability regions stable antisymmetric solitons coexist with either symmetric or asymmetric ones.Comment: 9 figure

    Visible light communications-based indoor positioning via compressed sensing

    Get PDF
    This paper presents an approach for visible light communication-based indoor positioning using compressed sensing. We consider a large number of light emitting diodes (LEDs) simultaneously transmitting their positional information and a user device equipped with a photo-diode. By casting the LED signal separation problem into an equivalent compressed sensing framework, the user device is able to detect the set of nearby LEDs using sparse signal recovery algorithms. From this set, and using proximity method, position estimation is proposed based on the concept that if signal separation is possible, then overlapping light beam regions lead to decrease in positioning error due to increase in the number of reference points. The proposed method is evaluated in a LED-illuminated large-scale indoor open-plan office space scenario. The positioning accuracy is compared against the positioning error lower bound of the proximity method, for various system parameters.Comment: to appear in IEEE Communication Letter

    THE REMITTANCE INFLOWS’ IMPACT ON SAVINGS IN THE SERBIAN ECONOMY

    Get PDF
    Remittance inflows represent one of the most significant sources of foreign funding for most developing countries. These funds have also proven to be one of the most stable sources of external financing for developing countries during the past few decades and in the period of the last global crisis. They are much less responsive to economic cycles and economic shocks than foreign direct investments and other private and official capital flows. The benefits that a developing country can have from stable cash inflows are various as far as they are directed in activities that contribute to economic growth and development. Theoretically, channeling remittances into savings and investments can lead to long-term economic growth. Formal transfer of remittances through the banking system and financial markets can lead to stronger financial stability and development of new financial instruments. Since remittances reduce the volatility of GDP and may contribute to financial system development they are able to additionally boost country\u27s growth and development. Finally, these resources significantly contribute to the fight against poverty and inequality. Taking into account all the positive impacts the remittances may have in developing countries, the goal of this paper is to investigate in further detail the relationship between remittances and savings in Serbian economy. With this analysis, we aim to test whether there is a potential for remittance inflows channeling not only in consumption, but also in various investment alternatives that could provide long-term benefits to the local economy

    High- and low-frequency phonon modes in dipolar quantum gases trapped in deep lattices

    Full text link
    We study normal modes propagating on top of the stable uniform background in arrays of dipolar Bose-Einstein condensate (BEC) droplets trapped in a deep optical lattice. Both the on-site mean-field dynamics of the droplets and their displacement due to the repulsive dipole-dipole interactions (DDIs) are taken into account. Dispersion relations for two modes, \textit{viz}., high- and low- frequency counterparts of optical and acoustic phonon modes in condensed matter, are derived analytically and verified by direct simulations, for both cases of the repulsive and attractive contact interactions. The (counterpart of the) optical-phonon branch does not exist without the DDIs. These results are relevant in the connection to emerging experimental techniques enabling real-time imaging of the condensate dynamics and direct experimental measurement of phonon dispersion relations in BECs.Comment: Physical Review A, in pres

    Discrete solitons in an array of quantum dots

    Full text link
    We develop a theory for the interaction of classical light fields with an a chain of coupled quantum dots (QDs), in the strong-coupling regime, taking into account the local-field effects. The QD chain is modeled by a one-dimensional (1D) periodic array of two-level quantum particles with tunnel coupling between adjacent ones. The local-field effect is taken into regard as QD depolarization in the Hartree-Fock-Bogoliubov approximation. The dynamics of the chain is described by a system of two discrete nonlinear Schr\"{o}dinger (DNLS) equations for local amplitudes of the probabilities of the ground and first excited states. The two equations are coupled by a cross-phase-modulation cubic terms, produced by the local-field action, and by linear terms too. In comparison with previously studied DNLS systems, an essentially new feature is a phase shift between the intersite-hopping constants in the two equations. By means of numerical solutions, we demonstrate that, in this QD chain, Rabi oscillations (RO) self-trap into stable bright\textit{\ Rabi solitons} or \textit{Rabi breathers}. Mobility of the solitons is considered too. The related behavior of observable quantities, such as energy, inversion, and electric-current density, is given a physical interpretation. The results apply to a realistic region of physical parameters.Comment: 12 pages, 10 figures, Phys. Rev. B, in pres

    In-class Data Analysis Replications: Teaching Students while Testing Science

    Full text link
    Science is facing a reproducibility crisis. Previous work has proposed incorporating data analysis replications into classrooms as a potential solution. However, despite the potential benefits, it is unclear whether this approach is feasible, and if so, what the involved stakeholders-students, educators, and scientists-should expect from it. Can students perform a data analysis replication over the course of a class? What are the costs and benefits for educators? And how can this solution help benchmark and improve the state of science? In the present study, we incorporated data analysis replications in the project component of the Applied Data Analysis course (CS-401) taught at EPFL (N=354 students). Here we report pre-registered findings based on surveys administered throughout the course. First, we demonstrate that students can replicate previously published scientific papers, most of them qualitatively and some exactly. We find discrepancies between what students expect of data analysis replications and what they experience by doing them along with changes in expectations about reproducibility, which together serve as evidence of attitude shifts to foster students' critical thinking. Second, we provide information for educators about how much overhead is needed to incorporate replications into the classroom and identify concerns that replications bring as compared to more traditional assignments. Third, we identify tangible benefits of the in-class data analysis replications for scientific communities, such as a collection of replication reports and insights about replication barriers in scientific work that should be avoided going forward. Overall, we demonstrate that incorporating replication tasks into a large data science class can increase the reproducibility of scientific work as a by-product of data science instruction, thus benefiting both science and students
    corecore