176 research outputs found

    A diatribe in quantum chemistry

    Get PDF
    This study presents ab initio thermochemical estimates for a series of Ti and Si compounds, for which there are no experimental data. It also offers insights in the Ti and Si chemistry, which turns out to be quite different than that of the isovalent C;Silicon compounds are intimately involved with chemical vapour deposition (CVD) processes, as well as the technology of new materials;Ti plays a very important role in catalytic processes like alkene polymerization. Its reaction with small hydrocarbons, is a phenomenon very little understood and depends on the oxidation of the metal centre and the type of hydrocarbon. There is a very limited number of studies, experimental or theoretical, on the reaction of neutral metal atoms with small hydrocarbons. The understanding of such a process would also help understanding the formation of Ti-metcars, one of new the materials;The system B/H2 is one of great theoretical and practical importance. It is subject to interstate crossing and strong diabatic effects are expected to play a crucial role in it use as a potential rocket fuel

    Determining Force Field Parameters Involved with Metal Organic Framework Synthesis

    Get PDF
    Metal organic frameworks (MOFs) are synthetic materials made of a cage-like lattice with consistently spaced pores. The size of these pores are the defining characteristic of a MOF, as it determines which gases are allowed to pass through and which can be trapped. Examples of their potential use can be greenhouse gas sequestration or storage. Currently, the synthesis of MOFs is based on trial-and-error, and the successes are not well understood. We are working on building the theoretical framework that describes how a particular MOF, MIL-101, comes together during synthesis. Our initial approach was to simulate the possible reactions with chemical kinetics through Cantera (a software suite that works through Python). To do this, a list of all possible intermediates with their thermodynamic properties is required. Another approach is to calculate the chemical force field potentials, and simulate how the atoms themselves behave during the synthesis process. For both purposes we minimized the energy of the structure of one known intermediate, called ML3 (a metal core with three linkers) through Assisted Model Building with Energy Refinement (AMBER) and with electronic structure calculations through Gaussian 09. In the end, the parameters that defined this minimized structure of ML3 were found. These can be used further to build the MIL-101 mechanism for use in Cantera, as well as the force field simulations

    Confinement effects and acid strength in zeolites

    Get PDF
    Chemical reactivity and sorption in zeolites are coupled to confinement and—to a lesser extent—to the acid strength of Brønsted acid sites (BAS). In presence of water the zeolite Brønsted acid sites eventually convert into hydronium ions. The gradual transition from zeolite Brønsted acid sites to hydronium ions in zeolites of varying pore size is examined by ab initio molecular dynamics combined with enhanced sampling based on Well-Tempered Metadynamics and a recently developed set of collective variables. While at low water content (1–2 water/BAS) the acidic protons prefer to be shared between zeolites and water, higher water contents (n > 2) invariably lead to solvation of the protons within a localized water cluster adjacent to the BAS. At low water loadings the standard free energy of the formed complexes is dominated by enthalpy and is associated with the acid strength of the BAS and the space around the site. Conversely, the entropy increases linearly with the concentration of waters in the pores, favors proton solvation and is independent of the pore size/shape

    CO2 Utilization and Storage in Shale Gas Reservoirs: Experimental Results and Economic Impacts

    Get PDF
    AbstractNatural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) and associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. In contrast, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural gas production

    Ubiquitous Superconducting Diode Effect in Superconductor Thin Films

    Full text link
    The macroscopic coherence in superconductors supports dissipationless supercurrents which could play a central role in emerging quantum technologies. Accomplishing unequal supercurrents in the forward and backward directions would enable unprecedented functionalities. This nonreciprocity of critical supercurrents is called superconducting (SC) diode effect. We demonstrate strong SC diode effect in conventional SC thin films, such as niobium and vanadium, employing external magnetic fields as small as 1 Oe. Interfacing the SC layer with a ferromagnetic semiconductor EuS, we further accomplish non-volatile SC diode effect reaching a giant efficiency of 65%. By careful control experiments and theoretical modeling, we demonstrate that the critical supercurrent nonreciprocity in SC thin films could be easily accomplished with asymmetrical vortex edge/surface barriers and the universal Meissner screening current governing the critical currents. Our engineering of the SC diode effect in simple systems opens door for novel technologies. Meanwhile, we reveal the ubiquity of Meissner screening effect induced SC diode effect in superconducting films, which should be eliminated with great care in the search of exotic superconducting states harboring finite-momentum Cooper pairing.Comment: 27 pages, 16 figure

    Rh-Based Mixed Alcohol Synthesis Catalysts: Characterization and Computational Report

    Get PDF
    The U.S. Department of Energy is conducting a program focused on developing a process for the conversion of biomass to bio-based fuels and co-products. Biomass-derived syngas is converted thermochemically within a temperature range of 240 to 330°C and at elevated pressure (e.g., 1200 psig) over a catalyst. Ethanol is the desired reaction product, although other side compounds are produced, including C3 to C5 alcohols; higher (i.e., greater than C1) oxygenates such as methyl acetate, ethyl acetate, acetic acid and acetaldehyde; and higher hydrocarbon gases such as methane, ethane/ethene, propane/propene, etc. Saturated hydrocarbon gases (especially methane) are undesirable because they represent a diminished yield of carbon to the desired ethanol product and represent compounds that must be steam reformed at high energy cost to reproduce CO and H2. Ethanol produced by the thermochemical reaction of syngas could be separated and blended directly with gasoline to produce a liquid transportation fuel. Additionally, higher oxygenates and unsaturated hydrocarbon side products such as olefins also could be further processed to liquid fuels. The goal of the current project is the development of a Rh-based catalyst with high activity and selectivity to C2+ oxygenates. This report chronicles an effort to characterize numerous supports and catalysts to identify particular traits that could be correlated with the most active and/or selective catalysts. Carbon and silica supports and catalysts were analyzed. Generally, analyses provided guidance in the selection of acceptable catalyst supports. For example, supports with high surface areas due to a high number of micropores were generally found to be poor at producing oxygenates, possibly because of mass transfer limitations of the products formed out of the micropores. To probe fundamental aspects of the complicated reaction network of CO with H2, a computational/ theoretical investigation using quantum mechanical and ab initio molecular dynamics calculations was initiated in 2009. Computational investigations were performed first to elucidate understanding of the nature of the catalytically active site. Thermodynamic calculations revealed that Mn likely exists as a metallic alloy with Rh in Rh-rich environments under reducing conditions at the temperatures of interest. After determining that reduced Rh-Mn alloy metal clusters were in a reduced state, the activation energy barriers of numerous transition state species on the catalytically active metal particles were calculated to compute the activation barriers of several reaction pathways that are possible on the catalyst surface. Comparison of calculations with a Rh nanoparticle versus a Rh-Mn nanoparticle revealed that the presence of Mn enabled the reaction pathway of CH with CO to form an adsorbed CHCO species, which was a precursor to C2+ oxygenates. The presence of Mn did not have a significant effect on the rate of CH4 production. Ir was observed during empirical catalyst screening experiments to improve the activity and selectivity of Rh-Mn catalysts. Thus, the addition of Ir to the Rh-Mn nanoparticles also was probed computationally. Simulations of Rh-Mn-Ir nanoparticles revealed that, with sufficient Ir concentrations, the Rh, Mn and Ir presumably would be well mixed within a nanoparticle. Activation barriers were calculated for Rh-Mn-Ir nanoparticles for several C-, H-, and O-containing transitional species on the nanoparticle surface. It was found that the presence of Ir opened yet another reactive pathway whereby HCO is formed and may undergo insertion with CHx surface moieties. The reaction pathway opened by the presence of Ir is in addition to the CO + CH pathway opened by the presence of Mn. Similar to Mn, the presence of Ir was not found to not affect the rate of CH4 production
    • …
    corecore