90 research outputs found
Black Holes at the IceCube Neutrino Telescope
If the fundamental Planck scale is about a TeV and the cosmic neutrino flux
is at the Waxman-Bahcall level, quantum black holes are created daily in the
Antarctic ice-cap. We re-examine the prospects for observing such black holes
with the IceCube neutrino-detection experiment. To this end, we first revise
the black hole production rate by incorporating the effects of inelasticty,
i.e., the energy radiated in gravitational waves by the multipole moments of
the incoming shock waves. After that we study in detail the process of Hawking
evaporation accounting for the black hole's large momentum in the lab system.
We derive the energy spectrum of the Planckian cloud which is swept forward
with a large, O (10^6), Lorentz factor. (It is noteworthy that the boosted
thermal spectrum is also relevant for the study of near-extremal supersymmetric
black holes, which could be copiously produced at the LHC.) In the
semiclassical regime, we estimate the average energy of the boosted particles
to be less than 20% the energy of the neutrino-progenitor. Armed with such a
constraint, we determine the discovery reach of IceCube by tagging on "soft"
(relative to what one would expect from charged current standard model
processes) muons escaping the electromagnetic shower bubble produced by the
black hole's light descendants. The statistically significant 5-sigma excess
extends up to a quantum gravity scale ~ 1.3 TeV.Comment: Matching version to be published in Phys. Rev.
Many analysts, one data set: making transparent how variations in analytic choices affect results
Twenty-nine teams involving 61 analysts used the same data set to address the same research question: whether soccer referees are more likely to give red cards to dark-skin-toned players than to light-skin-toned players. Analytic approaches varied widely across the teams, and the estimated effect sizes ranged from 0.89 to 2.93 (Mdn = 1.31) in odds-ratio units. Twenty teams (69%) found a statistically significant positive effect, and 9 teams (31%) did not observe a significant relationship. Overall, the 29 different analyses used 21 unique combinations of covariates. Neither analysts’ prior beliefs about the effect of interest nor their level of expertise readily explained the variation in the outcomes of the analyses. Peer ratings of the quality of the analyses also did not account for the variability. These findings suggest that significant variation in the results of analyses of complex data may be difficult to avoid, even by experts with honest intentions. Crowdsourcing data analysis, a strategy in which numerous research teams are recruited to simultaneously investigate the same research question, makes transparent how defensible, yet subjective, analytic choices influence research results
Origin of the hot gas in low-mass protostars, Herschel-PACS spectroscopy of HH 46
Aims. “Water In Star-forming regions with Herschel” (WISH) is a Herschel key programme aimed at understanding the physical and chemical
structure of young stellar objects (YSOs) with a focus on water and related species.
Methods. The low-mass protostar HH 46 was observed with the Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space
Observatory to measure emission in H2O, CO, OH, [O i], and [C ii] lines located between 63 and 186 μm. The excitation and spatial distribution
of emission can disentangle the different heating mechanisms of YSOs, with better spatial resolution and sensitivity than previously possible.
Results. Far-IR line emission is detected at the position of the protostar and along the outflow axis. The OH emission is concentrated at the
central position, CO emission is bright at the central position and along the outflow, and H2O emission is concentrated in the outflow. In addition,
[O i] emission is seen in low-velocity gas, assumed to be related to the envelope, and is also seen shifted up to 170 km s−1 in both the red- and
blue-shifted jets. Envelope models are constructed based on previous observational constraints. They indicate that passive heating of a spherical
envelope by the protostellar luminosity cannot explain the high-excitation molecular gas detected with PACS, including CO lines with upper levels
at >2500 K above the ground state. Instead, warm CO and H2O emission is probably produced in the walls of an outflow-carved cavity in the
envelope, which are heated by UV photons and non-dissociative C-type shocks. The bright OH and [Oi] emission is attributed to J-type shocks in
dense gas close to the protostar. In the scenario described here, the combined cooling by far-IR lines within the central spatial pixel is estimated to
be 2 × 10−2 L, with 60–80% attributed to J- and C-type shocks produced by interactions between the jet and the envelope
Low Cost Tuberculosis Vaccine Antigens in Capsules: Expression in Chloroplasts, Bio-Encapsulation, Stability and Functional Evaluation In Vitro
Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6kDa early secretory antigenic target) and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39) fused with cholera toxin B-subunit (CTB) and LipY (a cell wall protein) were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential for long-term storage at room temperature. To our knowledge, this is the first report of expression of TB vaccine antigens in chloroplasts
Modeling the interactions between river morphodynamics and riparian vegetation
The study of river-riparian vegetation interactions is an important and intriguing research field in geophysics. Vegetation is an active element of the ecological dynamics of a floodplain which interacts with the fluvial processes and affects the flow field, sediment transport, and the morphology of the river. In turn, the river provides water, sediments, nutrients, and seeds to the nearby riparian vegetation, depending on the hydrological, hydraulic, and geomorphological characteristic of the stream. In the past, the study of this complex theme was approached in two different ways. On the one hand, the subject was faced from a mainly qualitative point of view by ecologists and biogeographers. Riparian vegetation dynamics and its spatial patterns have been described and demonstrated in detail, and the key role of several fluvial processes has been shown, but no mathematical models have been proposed. On the other hand, the quantitative approach to fluvial processes, which is typical of engineers, has led to the development of several morphodynamic models. However, the biological aspect has usually been neglected, and vegetation has only been considered as a static element. In recent years, different scientific communities (ranging from ecologists to biogeographers and from geomorphologists to hydrologists and fluvial engineers) have begun to collaborate and have proposed both semiquantitative and quantitative models of river-vegetation interconnections. These models demonstrate the importance of linking fluvial morphodynamics and riparian vegetation dynamics to understand the key processes that regulate a riparian environment in order to foresee the impact of anthropogenic actions and to carefully manage and rehabilitate riparian areas. In the first part of this work, we review the main interactions between rivers and riparian vegetation, and their possible modeling. In the second part, we discuss the semiquantitative and quantitative models which have been proposed to date, considering both multi- and single-thread river
- …