9 research outputs found
A comparative study of the reported performance of ab initio protein structure prediction algorithms
Protein structure prediction is one of the major challenges in bioinformatics today. Throughout the past five decades, many different algorithmic approaches have been attempted, and although progress has been made the problem remains unsolvable even for many small proteins. While the general objective is to predict the three-dimensional structure from primary sequence, our current knowledge and computational power are simply insufficient to solve a problem of such high complexity
Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks
BACKGROUND: Predicting the three-dimensional structure of a protein from its amino acid sequence is currently one of the most challenging problems in bioinformatics. The internal structure of helices and sheets is highly recurrent and help reduce the search space significantly. However, random coil segments make up nearly 40% of proteins and they do not have any apparent recurrent patterns, which complicates overall prediction accuracy of protein structure prediction methods. Luckily, previous work has indicated that coil segments are in fact not completely random in structure and flanking residues do seem to have a significant influence on the dihedral angles adopted by the individual amino acids in coil segments. In this work we attempt to predict a probability distribution of these dihedral angles based on the flanking residues. While attempts to predict dihedral angles of coil segments have been done previously, none have, to our knowledge, presented comparable results for the probability distribution of dihedral angles. RESULTS: In this paper we develop an artificial neural network that uses an input-window of amino acids to predict a dihedral angle probability distribution for the middle residue in the input-window. The trained neural network shows a significant improvement (4-68%) in predicting the most probable bin (covering a 30° × 30° area of the dihedral angle space) for all amino acids in the data set compared to baseline statistics. An accuracy comparable to that of secondary structure prediction (≈ 80%) is achieved by observing the 20 bins with highest output values. CONCLUSION: Many different protein structure prediction methods exist and each uses different tools and auxiliary predictions to help determine the native structure. In this work the sequence is used to predict local context dependent dihedral angle propensities in coil-regions. This predicted distribution can potentially improve tertiary structure prediction methods that are based on sampling the backbone dihedral angles of individual amino acids. The predicted distribution may also help predict local structure fragments used in fragment assembly methods