259 research outputs found

    The Metallicity of the Intracluster Medium Over Cosmic Time: Further Evidence for Early Enrichment

    Get PDF
    We use Chandra X-ray data to measure the metallicity of the intracluster medium (ICM) in 245 massive galaxy clusters selected from X-ray and Sunyaev-Zel'dovich (SZ) effect surveys, spanning redshifts 0<z<1.20<z<1.2. Metallicities were measured in three different radial ranges, spanning cluster cores through their outskirts. We explore trends in these measurements as a function of cluster redshift, temperature, and surface brightness "peakiness" (a proxy for gas cooling efficiency in cluster centers). The data at large radii (0.5--1 r500r_{500}) are consistent with a constant metallicity, while at intermediate radii (0.1-0.5 r500r_{500}) we see a late-time increase in enrichment, consistent with the expected production and mixing of metals in cluster cores. In cluster centers, there are strong trends of metallicity with temperature and peakiness, reflecting enhanced metal production in the lowest-entropy gas. Within the cool-core/sharply peaked cluster population, there is a large intrinsic scatter in central metallicity and no overall evolution, indicating significant astrophysical variations in the efficiency of enrichment. The central metallicity in clusters with flat surface brightness profiles is lower, with a smaller intrinsic scatter, but increases towards lower redshifts. Our results are consistent with other recent measurements of ICM metallicity as a function of redshift. They reinforce the picture implied by observations of uniform metal distributions in the outskirts of nearby clusters, in which most of the enrichment of the ICM takes place before cluster formation, with significant later enrichment taking place only in cluster centers, as the stellar populations of the central galaxies evolve.Comment: 13 pages. Accepted version, to appear in MNRA

    Cosmology and Astrophysics from Relaxed Galaxy Clusters I: Sample Selection

    Full text link
    This is the first in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here we present a new, automated method for identifying relaxed clusters based on their morphologies in X-ray imaging data. While broadly similar to others in the literature, the morphological quantities that we measure are specifically designed to provide a fair basis for comparison across a range of data quality and cluster redshifts, to be robust against missing data due to point-source masks and gaps between detectors, and to avoid strong assumptions about the cosmological background and cluster masses. Based on three morphological indicators - Symmetry, Peakiness and Alignment - we develop the SPA criterion for relaxation. This analysis was applied to a large sample of cluster observations from the Chandra and ROSAT archives. Of the 361 clusters which received the SPA treatment, 57 (16 per cent) were subsequently found to be relaxed according to our criterion. We compare our measurements to similar estimators in the literature, as well as projected ellipticity and other image measures, and comment on trends in the relaxed cluster fraction with redshift, temperature, and survey selection method. Code implementing our morphological analysis will be made available on the web.Comment: MNRAS, in press. 43 pages in total, of which 17 are tables (please think twice before printing). 18 figures, 4 tables. Machine-readable tables will be available from the journal and at the url below; code will be posted at http://www.slac.stanford.edu/~amantz/work/morph14

    Actinomyces naeslundii

    Get PDF
    Actinomyces rarely causes endocarditis with 25 well-described cases reported in the literature in the past 75 years. We present a case of prosthetic valve endocarditis (PVE) caused by Actinomyces naeslundii. To our knowledge, this is the first report in the literature of endocarditis due to this organism and the second report of PVE caused by Actinomyces

    Aircraft Regional-Scale Flux Measurements over Complex Landscapes of Mangroves, Desert, and Marine Ecosystems of Magdalena Bay, Mexico

    Get PDF
    Natural ecosystems are rarely structurally simple or functionally homogeneous. This is true for the complex coastal region of Magdalena Bay, Baja California Sur, Mexico, where the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert were studied. The Sky Arrow 650TCN environmental research aircraft proved to be an effective tool in characterizing land–atmosphere fluxes of energy, CO2, and water vapor across a heterogeneous landscape at the scale of 1 km. The aircraft was capable of discriminating fluxes from all ecosystem types, as well as between nearshore and coastal areas a few kilometers distant. Aircraft-derived average midday CO2 fluxes from the desert showed a slight uptake of −1.32 μmol CO2 m−2 s−1, the coastal ocean also showed an uptake of −3.48 μmol CO2 m−2 s−1, and the lagoon mangroves showed the highest uptake of −8.11 μmol CO2 m−2 s−1. Additional simultaneous measurements of the normalized difference vegetation index (NDVI) allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. Aircraft approaches can, therefore, be instrumental in determining regional CO2 fluxes and can be pivotal in calculating and verifying ecosystem carbon sequestration regionally when coupled with satellite-derived products and ecosystem models

    Australian educational technologies trends 2018

    Get PDF
    Educational Technologies represent the wide range of digital tools used by teachers for teaching, students for learning, and administrators for managing schools. New tools are continually in development and often repurposed for an educational context from other industries. The following technologies have been considered as the five most significant for schools over the next 5 years, along with cost and professional learning requirements

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    Get PDF
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¿s needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl

    Spatio-temporal development of forests - Current trends in field methods and models

    Get PDF
    We present a critical review of current trends in research of spatio-temporal development of forests. The paper addresses (1) field methods for the development of spatially-explicit models of forest dynamics and their integration in models of forest dynamics, (2) strengths and limitations of traditional patch models versus spatially-explicit, individual-based models, and (3) the potential for moment-based methods in the analysis of forest dynamics. These topics are discussed with reference to their potential for solving open questions in the studies of forest dynamics. The study of spatio-temporal processes provides a link between pattern and process in plant communities, and plays a crucial role in understanding ecosystem dynamics. In the last decade, the development of spatially-explicit, individual-based models shifted the focus of forest dynamics modelling from the dynamics of discrete patches to the interactions among individual organisms, thus encapsulating the theory of "neighbourhood" dynamics. In turn, the stochastic properties and the complexity of spatially-explicit, individual-based models gave rise to the development of a new suite of so-called moment-based models. These new models describe the dynamics of individuals and of pairs of individuals in terms of their densities, thus directly capturing second-order information on spatial structure. So far, this approach has not been applied to forests; we indicate extensions needed for such applications. Moment-based models may be an important complement to spatially explicit individual-based models in developing a general spatial theory of forest dynamics. However, both kinds of models currently focus on fine scales, whereas a critical issue in forest dynamics is to understand the interaction of fine-scale processes with coarser-scale disturbances. To obtain a more complete picture of forest dynamics, the relevant links and interactions between fine-, intermediate-, and coarse-scale processes ought to be identified. Intensive links between modelling work and field studies designed across different scales are a promising means to create a new perspective on forest dynamics

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe
    corecore