259 research outputs found
Astro2020 Science White Paper: Triggered High-Priority Observations of Dynamic Solar System Phenomena
Unexpected dynamic phenomena have surprised solar system observers in the
past and have led to important discoveries about solar system workings.
Observations at the initial stages of these events provide crucial information
on the physical processes at work. We advocate for long-term/permanent programs
on ground-based and space-based telescopes of all sizes - including Extremely
Large Telescopes (ELTs) - to conduct observations of high-priority dynamic
phenomena, based on a predefined set of triggering conditions. These programs
will ensure that the best initial dataset of the triggering event are taken;
separate additional observing programs will be required to study the temporal
evolution of these phenomena. While not a comprehensive list, the following are
notional examples of phenomena that are rare, that cannot be anticipated, and
that provide high-impact advances to our understandings of planetary processes.
Examples include: new cryovolcanic eruptions or plumes on ocean worlds; impacts
on Jupiter, Saturn, Uranus, or Neptune; extreme eruptions on Io; convective
superstorms on Saturn, Uranus, or Neptune; collisions within the asteroid belt
or other small-body populations; discovery of an interstellar object passing
through our solar system (e.g. 'Oumuamua); and responses of planetary
atmospheres to major solar flares or coronal mass ejections.Comment: Astro2020 white pape
Spatially Explicit Network Analysis Reveals MultiâSpecies Annual Cycle Movement Patterns of Sea Ducks
Conservation of longâdistance migratory species poses unique challenges. Migratory connectivity, that is, the extent to which groupings of individuals at breeding sites are maintained in wintering areas, is frequently used to evaluate population structure and assess use of key habitat areas. However, for species with complex or variable annual cycle movements, this traditional bimodal framework of migratory connectivity may be overly simplistic. Like many other waterfowl, sea ducks often travel to specific preâ and postâbreeding sites outside their nesting and wintering areas to prepare for migration by feeding extensively and, in some cases, molting their flight feathers. These additional migrations may play a key role in population structure, but are not included in traditional models of migratory connectivity. Network analysis, which applies graph theory to assess linkages between discrete locations or entities, offers a powerful tool for quantitatively assessing the contributions of different sites used throughout the annual cycle to complex spatial networks. We collected satellite telemetry data on annual cycle movements of 672 individual sea ducks of five species from throughout eastern North America and the Great Lakes. From these data, we constructed a multiâspecies network model of migratory patterns and site use over the course of breeding, molting, wintering, and migratory staging. Our results highlight interâ and intraâspecific differences in the patterns and complexity of annual cycle movement patterns, including the central importance of staging and molting sites in James Bay, the St. Lawrence River, and southern New England to multiâspecies annual cycle habitat linkages, and highlight the value of Longâtailed Ducks (Calengula haemalis) as an umbrella species to represent the movement patterns of multiple sea duck species. We also discuss potential applications of network migration models to conservation prioritization, identification of population units, and integrating different data streams
Implanted Satellite Transmitters Affect Sea Duck Movement Patterns at Short and Long Timescales
Studies of the effects of transmitters on wildlife often focus on survival. However, sublethal behavioral changes resulting from radio-marking have the potential to affect inferences from telemetry data and may vary based on individual and environmental characteristics. We used a long-term, multi-species tracking study of sea ducks to assess behavioral patterns at multiple temporal scales following implantation of intracoelomic satellite transmitters. We applied state-space models to assess short-term behavioral patterns in 476 individuals with implanted satellite transmitters, as well as comparing breeding site attendance and migratory phenology across multiple years after capture. In the short term, our results suggest an increase in dispersive behavior immediately following capture and transmitter implantation; however, behavior returned to seasonally average patterns within ~5 days after release. Over multiple years, we found that breeding site attendance by both males and females was depressed during the first breeding season after radio-marking relative to subsequent years, with larger relative decreases in breeding site attendance among males than females. We also found that spring and breeding migrations occurred later in the first year after radio-marking than in subsequent years. Across all behavioral effects, the severity of behavioral change often varied by species, sex, age, and capture season. We conclude that, although individuals appear to adjust relatively quickly (i.e. within 1 week) to implanted satellite transmitters, changes in breeding phenology may occur over the longer term and should be considered when analyzing and reporting telemetry data
A randomized phase III trial of stereotactic ablative radiotherapy for patients with up to 10 oligometastases and a synchronous primary tumor (SABR-SYNC): study protocol
BACKGROUND
Emerging randomized data, mostly from phase II trials, have suggested that patients with oligometastatic cancers may benefit from ablative treatments such as stereotactic ablative radiotherapy (SABR). However, phase III data testing this paradigm are lacking, and many studies have examined SABR in the setting of metachronous oligometastatic disease. The goal of the SABR-SYNC trial is to assess the effect of SABR in patients with oligometastatic cancers and a synchronous primary tumor.
METHODS
One hundred and eighty patients will be randomized in a 1:2 ratio between standard of care (SOC) palliative-intent treatments vs. SOCâ+âablative therapy (SABR preferred) to all sites of known disease. Randomization will be stratified based on histology and number of metastases at enrollment. SABR may be delivered in 1-, 3- and 5-fraction regimens, with recommended doses of 20 Gy, 30 Gy, and 35 Gy, respectively. Non-SABR local modalities (e.g. surgery, thermal ablation, conventional radiation) may be used for treatment of the primary or metastases at the discretion of the treating physicians, if those modalities are clinically preferred. The primary endpoint is overall survival, and secondary endpoints include progression-free survival, time to development of new metastatic lesions, time to initiation of next systemic therapy, quality of life, and toxicity. Translational endpoints include assessment of circulating tumor DNA and immunological predictors of outcomes.
DISCUSSION
SABR-SYNC will provide phase III data to assess the impact of SABR on overall survival in a population of patients with synchronous oligometastases. The translational component will attempt to identify novel prognostic and predictive biomarkers to aid in clinical decision making.
TRIAL REGISTRATION
Clinicaltrials.gov NCT05717166 (registration date: Feb. 8, 2023)
Recommended from our members
Implications of NiMH Hysteresis on HEV Battery Testing and Performance
Nickel Metal-Hydride (NiMH) is an advanced high-power battery technology that is presently employed in Hybrid Electric Vehicles (HEVs) and is one of several technologies undergoing continuing research and development by FreedomCAR. Unlike some other HEV battery technologies, NiMH exhibits a strong hysteresis effect upon charge and discharge. This hysteresis has a profound impact on the ability to monitor state-of-charge and battery performance. Researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) have been investigating the implications of NiMH hysteresis on HEV battery testing and performance. Experimental results, insights, and recommendations are presented
Recommended from our members
Mediation of coffee-induced improvements in human vascular function by chlorogenic acids and its metabolites: two randomized, controlled, crossover intervention trials
Background & aims
Polyphenol intake has been linked to improvements in human vascular function, although data on hydroxycinnamates, such as chlorogenic acid (CGA) have not yet been studied. We aimed to investigate the impact of coffee intake rich in chlorogenic acid on human vascular function and whether CGAs are involved in potential effects.
Methods
Two acute randomized, controlled, cross-over human intervention trials were conducted. The impact of coffee intake, matched for caffeine but differing in CGA content (89, and 310 mg) on flow-mediated dilation (FMD) was assessed in 15 healthy male subjects. In a second intervention trial conducted with 24 healthy male subjects, the impact of pure 5-caffeoylquinic acid (5-CQA), the main CGA in coffee (5-CQA; 450 mg and 900 mg) on FMD was also investigated.
Results
We observed a bi-phasic FMD response after low and high polyphenol, (89 mg and 310 mg CGA) intake, with increases at 1 (1.10 ± 0.43% and 1.34 ± 0.62%, respectively) and 5 (0.79% ± 0.32 and 1.52% ± 0.40, respectively) hours post coffee consumption. FMD responses to coffee intake was closely paralleled by the appearance of CGA metabolites in plasma, notably 3-, 4- and 5-CQA and ferulic-4âČ-O-sulfate at 1 h and isoferulic-4âČ-O-glucuronide and ferulic-4âČ-O-sulfate at 5 h. Intervention with purified 5-CQA (450 mg) also led to an improvement in FMD response relative to control (0.75 ± 1.31% at 1 h post intervention, p = 0.06) and concomitant appearance of plasma metabolites.
Conclusions
Coffee intake acutely improves human vascular function, an effect, in part, mediated by 5-CQA and its physiological metabolites
Achievements and Challenges in the Science of Space Weather
In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.Peer reviewe
- âŠ