9 research outputs found

    Platelet PECAM-1 Inhibits Thrombus Formation In Vivo

    Get PDF
    Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a cell surface glycoprotein receptor expressed on a range of blood cells including platelets, and is also on vascular endothelial cells. PECAM-1 possesses adhesive and signalling properties, the latter being mediated by an Immunoreceptor Tyrosine-based Inhibitory Motif present on the cytoplasmic tail of the protein. Recent studies in vitro have demonstrated that PECAM-1 signalling inhibits the aggregation of platelets. In the present study we have utilised PECAM-1 deficient mice and radiation chimeras to investigate the function of this receptor in the regulation of thrombus formation. Using intravital microscopy and laser induced injury to cremaster muscle arterioles, we show that thrombi formed in PECAM-1 deficient mice were larger, formed more rapidly than in control mice and were more stable. Larger thrombi were also formed in control mice transplanted with PECAM-1 deficient bone marrow, in comparison to control-transplanted mice. A ferric chloride model of thrombosis was used to investigate thrombus formation in carotid arteries. In PECAM-1 deficient mice the time to 75% vessel occlusion was significantly shorter than in control mice. These data provide evidence for the involvement of platelet PECAM-1 in the negative regulation of thrombus formation

    Peripheral Nerve Safety of Nerve Growth Factor Inhibition by Tanezumab: Pooled Analyses of Phase III Clinical Studies in Over 5000 Patients with Osteoarthritis

    No full text
    BACKGROUND: Tanezumab, a humanized anti-nerve growth factor antibody, was developed for the treatment of pain associated with osteoarthritis. Due to its mechanism of action, peripheral nerve safety was assessed in all clinical studies. OBJECTIVES: To summarize the neurological safety of intravenous (IV) and subcutaneous (SC) tanezumab versus placebo in patients with osteoarthritis. METHODS: Data were pooled from 3389 patients across seven studies that investigated IV administration, and from 1840 patients across three studies that investigated SC administration. The treatment period of each study ranged from 16 to 24 weeks, and follow-up periods ranged from 8 to 24 weeks. Neurological safety evaluations focused on adverse events (AEs) of abnormal peripheral sensation (APS), neurologic examinations, and consultations. RESULTS: Across datasets, the incidence of AEs of APS was higher in tanezumab groups versus placebo. Paresthesia and hypoesthesia were the most frequently reported AEs in tanezumab-treated patients, compared with placebo. In both datasets, most AEs were of mild severity, resolved, and rarely resulted in discontinuation. In all treatment groups in both IV and SC studies, over 90% of patients had no new or worsened neurological examination abnormalities at the last study visit. Across datasets, mononeuropathy was diagnosed more frequently in tanezumab groups compared with placebo. Polyneuropathy was diagnosed in ≤ 0.9% of patients in tanezumab and placebo groups. CONCLUSIONS: Tanezumab IV or SC had an increased incidence of AEs of APS, such as paresthesia and hypoesthesia, and diagnoses of mononeuropathy compared with placebo. However, tanezumab was not associated with generalized peripheral neuropathy. GOV IDENTIFIERS: NCT00733902, NCT00744471, NCT00830063, NCT00863304, NCT00863772, NCT01089725, NCT00985621, NCT02697773, and NCT02709486

    Platelet PECAM-1 Inhibits Thrombus Formation In Vivo

    No full text
    Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a cell surface glycoprotein receptor expressed on a range of blood cells including platelets, and is also on vascular endothelial cells. PECAM-1 possesses adhesive and signalling properties, the latter being mediated by an Immunoreceptor Tyrosine-based Inhibitory Motif present on the cytoplasmic tail of the protein. Recent studies in vitro have demonstrated that PECAM-1 signalling inhibits the aggregation of platelets. In the present study we have utilised PECAM-1 deficient mice and radiation chimeras to investigate the function of this receptor in the regulation of thrombus formation. Using intravital microscopy and laser induced injury to cremaster muscle arterioles, we show that thrombi formed in PECAM-1 deficient mice were larger, formed more rapidly than in control mice and were more stable. Larger thrombi were also formed in control mice transplanted with PECAM-1 deficient bone marrow, in comparison to control-transplanted mice. A ferric chloride model of thrombosis was used to investigate thrombus formation in carotid arteries. In PECAM-1 deficient mice the time to 75% vessel occlusion was significantly shorter than in control mice. These data provide evidence for the involvement of platelet PECAM-1 in the negative regulation of thrombus formation

    Platelet PECAM-1 Inhibits Thrombus Formation In Vivo

    No full text
    Platelet endothelial cell adhesion molecule- 1 (PECAM-1) is a cell surface glycoprotein receptor expressed on a range of blood cells, including platelets, and on vascular endothelial cells. PECAM-1 possesses adhesive and signaling properties, the latter being mediated by immunoreceptor tyrosine-based inhibitory motifs present on the cytoplasmic tail of the protein. Recent studies in vitro have demonstrated that PECAM-1 signaling inhibits the aggregation of platelets. In the present study we have used PECAM-1– deficient mice and radiation chimeras to investigate the function of this receptor in the regulation of thrombus formation. Using intravital microscopy and laser induced injury to cremaster muscle arterioles, we show that thrombi formed in PECAM-1–deficient mice were larger, formed more rapidly than in control mice, and were more stable. Larger thrombi were also formed in control mice that received transplants of PECAM-1–deficient bone marrow, in comparison to mice that received control transplants. A ferric chloride model of thrombosis was used to investigate thrombus formation in carotid arteries. In PECAM-1–deficient mice the time to 75% vessel occlusion was significantly shorter than in control mice. These data provide evidence for the involvement of platelet PECAM-1 in the negative regulation of thrombus formation. (Blood. 2006;107:535-541
    corecore