121 research outputs found
Quantum Critical Scaling in a Moderately Doped Antiferromagnet
Using high temperature expansions for the equal time correlator and
static susceptibility for the t-J model, we present evidence for
quantum critical (QC), , behavior at intermediate temperatures in a
broad range of ratio, doping, and temperatures. We find that the
dynamical susceptibility is very close to the universal scaling function
computable for the asymptotic QC regime, and that the dominant energy scale is
temperature. Our results are in excellent agreement with measurements of the
spin-echo decay rate, , in LaCuO, and provide qualitative
understanding of both and nuclear relaxation rates in
doped cuprates.Comment: 11 pages, REVTeX v3.0, PostScript file for 3 figures is attached,
UIUC-P-93-07-068. In this revised version, we calculate the scaling functions
and thus present new and more direct evidence in favor of our original
conclusion
Scaling Regimes, Crossovers, and Lattice Corrections in 2D Heisenberg Antiferromagnets
We study scaling behavior in 2D, S=1/2 and S=1 Heisenberg antiferromagnets
using the data on full q-dependences of the equal time structure factor and the
static susceptibility, calculated through high temperature expansions. We also
carry out comparisons with a model of two coupled S=1/2 planes with the
interlayer coupling tuned to the T=0 critical point. We separately determine
the spin-wave velocity c and mass , in addition to the correlation
length, , and find that c is temperature dependent; only for T\alt JS,
it approaches its known T=0 value . Despite this temperature dependent
spin-wave velocity, full q- and -dependences of the dynamical
susceptibility agree with the universal scaling functions
computable for the -model, for temperatures upto .
Detailed comparisons show that below the S=1 model is in the renormalized
classical (RC) regime, the two plane model is in the quantum critical (QC)
regime, and the S=1/2 model exhibits a RC-QC crossover, centered at T=0.55J. In
particular, for the S=1/2 model above this crossover and for the two-plane
model at all T, the spin-wave mass is in excellent agreement with the universal
QC prediction, . In contrast, for the S=1/2 model below the
RC-QC crossover, and for the S=1 model at all T, the behavior agrees with the
known RC expression. For all models nonuniversal behavior occurs above . Our results strongly support the conjecture of Chubukov and Sachdev
that the S=1/2 model is close to the T=0 critical point to exhibit QC behavior.Comment: 13 pages, REVTeX with attached PostScript (see file for addl info
Spin Gaps and Bilayer Coupling in YBaCuO and YBaCuO
We investigate the relevance to the physics of underdoped
YBaCuO and YBaCuO of the quantum critical point
which occurs in a model of two antiferromagnetically coupled planes of
antiferromagnetically correlated spins. We use a Schwinger boson mean field
theory and a scaling analysis to obtain the phase diagram of the model and the
temperature and frequency dependence of various susceptibilities and relaxation
rates. We distinguish between a low coupled-planes regime in which
the optic spin excitations are frozen out and a high
decoupled-planes regime in which the two planes fluctuate independently. In the
coupled-planes regime the yttrium nuclear relaxation rate at low temperatures
is larger relative to the copper and oxygen rates than would be naively
expected in a model of uncorrelated planes. Available data suggest that in
YBaCuO the crossover from the coupled to the decoupled planes
regime occurs at or . The predicted correlation length is
of order 6 lattice constants at . Experimental data related to the
antiferromagnetic susceptibility of YBaCuO may be made consistent
with the theory, but available data for the uniform susceptibility are
inconsistent with the theory.Comment: RevTex 3.
Mutation at the Evi1 locus in Junbo mice causes susceptibility to otitis media
Otitis media ( OM), inflammation of the middle ear, remains the most common cause of hearing impairment in children. It is also the most common cause of surgery in children in the developed world. There is evidence from studies of the human population and mouse models that there is a significant genetic component predisposing to OM, yet nothing is known about the underlying genetic pathways involved in humans. We identified an N-ethyl-N-nitrosourea-induced dominant mouse mutant Junbo with hearing loss due to chronic suppurative OM and otorrhea. This develops from acute OM that arises spontaneously in the postnatal period, with the age of onset and early severity dependent on the microbiological status of the mice and their air quality. We have identified the causal mutation, a missense change in the C-terminal zinc finger region of the transcription factor Evi1. This protein is expressed in middle ear basal epithelial cells, fibroblasts, and neutrophil leukocytes at postnatal day 13 and 21 when inflammatory changes are underway. The identification and characterization of the Junbo mutant elaborates a novel role for Evi1 in mammalian disease and implicates a new pathway in genetic predisposition to OM
A dominant mutation within the DNA-binding domain of the bZIP transcription factor Maf causes murine cataract and results in selective alteration in DNA binding
The murine autosomal dominant cataract mutants created in mutagenesis experiments have proven to be a powerful resource for modelling the biological processes involved in cataractogenesis. We report a mutant which in the heterozygous state exhibits mild pulverulent cataract named 'opaque flecks in lens', symbol Ofl. By molecular mapping, followed by a candidate gene approach, the mutant was shown to be allelic with a knockout of the bZIP transcription factor, Maf. Homozygotes for Ofl and for Maf null mutations are similar but a new effect, renal tubular nephritis, was found in Ofl homozygotes surviving beyond 4 weeks, which may contribute to early lethality. Sequencing identified the mutation as a G-->A change, leading to the amino-acid substitution mutation R291Q in the basic region of the DNA-binding domain. Since mice heterozygous for knockouts of Maf show no cataracts, this suggests that the Ofl R291Q mutant protein has a dominant effect. We have demonstrated that this mutation results in a selective alteration in DNA binding affinities to target oligonucleotides containing variations in the core CRE and TRE elements. This implies that arginine 291 is important for core element binding and suggests that the mutant protein may exert a differential downstream effect amongst its binding targets. The cataracts seen in Ofl heterozygotes and human MAF mutations are similar to one another, implying that Ofl may be a model of human pulverulent cortical cataract. Furthermore, when bred onto a different genetic background Ofl heterozygotes also show anterior segment abnormalities. The Ofl mutant therefore provides a valuable model system for the study of Maf, and its interacting factors, in normal and abnormal lens and anterior segment development
Melatonin protects rats from radiotherapy-induced small intestine toxicity
Radiotherapy-induced gut toxicity is among the most prevalent dose-limiting toxicities following radiotherapy. Prevention of radiation enteropathy requires protection of the small intestine. However, despite the prevalence and burden of this pathology, there are currently no effective treatments for radiotherapy-induced gut toxicity, and this pathology remains unclear. The present study aimed to investigate the changes induced in the rat small intestine after external irradiation of the tongue, and to explore the potential radio-protective effects of melatonin gel. Male Wistar rats were subjected to irradiation of their tongues with an X-Ray YXLON Y.Tu 320-D03 irradiator, receiving a dose of 7.5 Gy/day for 5 days. For 21 days post-irradiation, rats were treated with 45 mg/day melatonin gel or vehicle, by local application into their mouths. Our results showed that mitochondrial oxidative stress, bioenergetic impairment, and subsequent NLRP3 inflammasome activation were involved in the development of radiotherapy-induced gut toxicity. Oral treatment with melatonin gel had a protective effect in the small intestine, which was associated with mitochondrial protection and, consequently, with a reduced inflammatory response, blunting the NF-κB/NLRP3 inflammasome signaling activation. Thus, rats treated with melatonin gel showed reduced intestinal apoptosis, relieving mucosal dysfunction and facilitating intestinal mucosa recovery. Our findings suggest that oral treatment with melatonin gel may be a potential preventive therapy for radiotherapy-induced gut toxicity in cancer patients.This study was partially supported by grant no. SAF2009-14037 from the Spanish Ministry of Economy and Competitivity (MINECO), GREIB.PT_2010_04 from the CEIBiotic Program of the University of Granada, Spain, and CTS-101 from the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, Spain
Comparative Transcriptional and Genomic Analysis of Plasmodium falciparum Field Isolates
Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs). Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment
- …