320 research outputs found
Entanglement and bifurcations in Jahn-Teller models
We compare and contrast the entanglement in the ground state of two
Jahn-Teller models. The system models the coupling of a
two-level electronic system, or qubit, to a single oscillator mode, while the
models the qubit coupled to two independent, degenerate
oscillator modes. In the absence of a transverse magnetic field applied to the
qubit, both systems exhibit a degenerate ground state. Whereas there always
exists a completely separable ground state in the system, the
ground states of the model always exhibit entanglement. For
the case we aim to clarify results from previous work, alluding
to a link between the ground state entanglement characteristics and a
bifurcation of a fixed point in the classical analogue. In the
case we make use of an ansatz for the ground state. We
compare this ansatz to exact numerical calculations and use it to investigate
how the entanglement is shared between the three system degrees of freedom.Comment: 11 pages, 9 figures, comments welcome; 2 references adde
Aircraft requirements for low/medium density markets
A study was conducted to determine the demand for and the economic factors involved in air transportation in a low and medium density market. The subjects investigated are as follows: (1) industry and market structure, (2) aircraft analysis, (3) economic analysis, (4) field surveys, and (5) computer network analysis. Graphs are included to show the economic requirements and the aircraft performance characteristics
Photonic Clusters
We show through rigorous calculations that dielectric microspheres can be
organized by an incident electromagnetic plane wave into stable cluster
configurations, which we call photonic molecules. The long-range optical
binding force arises from multiple scattering between the spheres. A photonic
molecule can exhibit a multiplicity of distinct geometries, including
quasicrystal-like configurations, with exotic dynamics. Linear stability
analysis and dynamical simulations show that the equilibrium configurations can
correspond with either stable or a type of quasi-stable states exhibiting
periodic particle motion in the presence of frictional dissipation.Comment: 4 pages, 3 figure
A minimal model for chaotic shear banding in shear-thickening fluids
We present a minimal model for spatiotemporal oscillation and rheochaos in
shear-thickening complex fluids at zero Reynolds number. In the model, a
tendency towards inhomogeneous flows in the form of shear bands combines with a
slow structural dynamics, modelled by delayed stress relaxation. Using
Fourier-space numerics, we study the nonequilibrium `phase diagram' of the
fluid as a function of a steady mean (spatially averaged) stress, and of the
relaxation time for structural relaxation. We find several distinct regions of
periodic behavior (oscillating bands, travelling bands, and more complex
oscillations) and also regions of spatiotemporal rheochaos. A low-dimensional
truncation of the model retains the important physical features of the full
model (including rheochaos) despite the suppression of sharply defined
interfaces between shear bands. Our model maps onto the FitzHugh-Nagumo model
for neural network dynamics, with an unusual form of long-range coupling.Comment: Revised version (in particular, new section III.E. and Appendix A
Who are you talking to? The role of addressee identity in utterance comprehension
Issue online: 30 March 2020Experimental evidence suggests that speaker and addressee quickly adapt to each
other from the earliest moments of sentence processing, and that interlocutor-related
information is rapidly integrated with other sources of nonpragmatic information
(e.g., semantic, morphosyntactic, etc.). These findings have been taken as support
for one-step models of sentence comprehension. The results from the present eventrelated
potential study challenge this theoretical framework providing a case where
discourse level information is integrated only at a late stage of processing, when
morphosyntactic analysis has been already initiated. We considered the case of
Basque allocutive agreement, where information about addressee gender is encoded
in verbal inflection. Two different types of Basque grammatical violations were presented
together with the corresponding control conditions: one could be detected
based on a morphosyntactic mismatch (person agreement violation), while the other
could be detected only if the addressee's gender was considered (allocutive violation).
Morphosyntactic violations elicited greater N400 effects followed by P600
effects, while allocutive violations elicited only P600 effects. These results provide
new constraints to one-step accounts as they represent a case where speakers do not
immediately adjust to the addressee's perspective. We propose that the relevance of
discourse-level information might be a crucial variable to reconcile the dichotomy
between one- and two-step models.Horizon 2020 Framework Programme,
Grant/Award Number: H2020-MSCAIF-
2018-837228; Fundación BBVA, Grant/
Award Number: IN[18]_HMS_LIN_0058;
Ministerio de Economía y Competitividad,
Grant/Award Number: IJCI-2016-27702,
PSI2014-54500, RYC 2017-22015 and
SEV-2015-490; Eusko Jaurlaritza, Grant/
Award Number: PI_2015_1_25; Gipuzkoa
Fellowship Program, Grant/Award Number:
FFI2016-76432-P. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 83722
Potential For Power: A Symposium On The Prospects For Power From Currently Unconventional Energy Sources
The wave energy arriving on the west coast of the United Kingdom represents a very substantial energy resource, amounting on average to more than twice the present installed capacity of the CEGB. Recent, comprehensive, studies by the CEGB (1) (2) and the National Engineering Laboratory (3) suggest that although there is no obvious technical reason for being unable ultimately to harness much of this energy, and many methods have been proposed, there are still considerable uncertainties over the choice of wave power system and its economics. Wave power does show sufficient promise however to have been made the subject of serious studies supported by the CEGB and the Department of Energy (4). In this Paper the potential of wave power and some of the more promising methods of harnessing it are discussed, together with an appreciation of some of the many technical and engineering problems which still need to be examined, and a discussion of the impact of wave power on the environment. By considering the results of recent research and their impact on wave power economics it is argued that wave power could be exploited to conserve fossil fuels but is unlikely to be competitive with nuclear power
Simple deterministic dynamical systems with fractal diffusion coefficients
We analyze a simple model of deterministic diffusion. The model consists of a
one-dimensional periodic array of scatterers in which point particles move from
cell to cell as defined by a piecewise linear map. The microscopic chaotic
scattering process of the map can be changed by a control parameter. This
induces a parameter dependence for the macroscopic diffusion coefficient. We
calculate the diffusion coefficent and the largest eigenmodes of the system by
using Markov partitions and by solving the eigenvalue problems of respective
topological transition matrices. For different boundary conditions we find that
the largest eigenmodes of the map match to the ones of the simple
phenomenological diffusion equation. Our main result is that the difffusion
coefficient exhibits a fractal structure by varying the system parameter. To
understand the origin of this fractal structure, we give qualitative and
quantitative arguments. These arguments relate the sequence of oscillations in
the strength of the parameter-dependent diffusion coefficient to the
microscopic coupling of the single scatterers which changes by varying the
control parameter.Comment: 28 pages (revtex), 12 figures (postscript), submitted to Phys. Rev.
Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study
The last decade has seen an explosion in models that describe phenomena in
systems medicine. Such models are especially useful for studying signaling
pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to
showcase current mathematical and statistical techniques that enable modelers
to gain insight into (models of) gene regulation, and generate testable
predictions. We introduce a range of modeling frameworks, but focus on ordinary
differential equation (ODE) models since they remain the most widely used
approach in systems biology and medicine and continue to offer great potential.
We present methods for the analysis of a single model, comprising applications
of standard dynamical systems approaches such as nondimensionalization, steady
state, asymptotic and sensitivity analysis, and more recent statistical and
algebraic approaches to compare models with data. We present parameter
estimation and model comparison techniques, focusing on Bayesian analysis and
coplanarity via algebraic geometry. Our intention is that this (non exhaustive)
review may serve as a useful starting point for the analysis of models in
systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte
General Stability Analysis of Synchronized Dynamics in Coupled Systems
We consider the stability of synchronized states (including equilibrium
point, periodic orbit or chaotic attractor) in arbitrarily coupled dynamical
systems (maps or ordinary differential equations). We develop a general
approach, based on the master stability function and Gershgorin disc theory, to
yield constraints on the coupling strengths to ensure the stability of
synchronized dynamics. Systems with specific coupling schemes are used as
examples to illustrate our general method.Comment: 8 pages, 1 figur
In-reach specialist nursing teams for residential care homes : uptake of services, impact on care provision and cost-effectiveness
Background: A joint NHS-Local Authority initiative in England designed to provide a dedicated nursing and physiotherapy in-reach team (IRT) to four residential care homes has been evaluated.The IRT supported 131 residents and maintained 15 'virtual' beds for specialist nursing in these care homes.
Methods: Data captured prospectively (July 2005 to June 2007) included: numbers of referrals; reason for referral; outcome (e.g. admission to IRT bed, short-term IRT support); length of stay in IRT; prevented hospital admissions; early hospital discharges; avoided nursing home transfers; and detection of unrecognised illnesses. An economic analysis was undertaken.
Results: 733 referrals were made during the 2 years (range 0.5 to 13.0 per resident per annum)resulting in a total of 6,528 visits. Two thirds of referrals aimed at maintaining the resident's independence in the care home. According to expert panel assessment, 197 hospital admissions were averted over the period; 20 early discharges facilitated; and 28 resident transfers to a nursing home prevented. Detection of previously unrecognised illnesses accounted for a high number of visits. Investment in IRT equalled £44.38 per resident per week. Savings through reduced hospital admissions, early discharges, delayed transfers to nursing homes, and identification of previously
unrecognised illnesses are conservatively estimated to produce a final reduction in care cost of £6.33 per resident per week. A sensitivity analysis indicates this figure might range from a weekly overall saving of £36.90 per resident to a 'worst case' estimate of £2.70 extra expenditure per resident per week.
Evaluation early in implementation may underestimate some cost-saving activities and greater savings may emerge over a longer time period. Similarly, IRT costs may reduce over time due to the potential for refinement of team without major loss in effectiveness.
Conclusion: Introduction of a specialist nursing in-reach team for residential homes is at least cost neutral and, in all probability, cost saving. Further benefits include development of new skills in the care home workforce and enhanced quality of care. Residents are enabled to stay in familiar surroundings rather than unnecessarily spending time in hospital or being transferred to a higher
dependency nursing home setting
- …