711 research outputs found

    Spin-up of the hyperon-softened accreting neutron stars

    Full text link
    We study the spin-up of the accreting neutron stars with a realistic hyperon-softened equation of state. Using precise 2-D calculations we study the evolutionary tracks of accreting neutron stars in the angular-momentum - frequency plane. In contrast to the case of spinning-down solitary radio-pulsars, where a strong back-bending behavior has been observed, we do not see back-bending phenomenon in the accretion-powered spinning-up case. We conclude that in the case of accretion-driven spin-up the back-bending is strongly suppressed by the mass-increase effect accompanying the angular-momentum increase.Comment: 5 pages, 5 figures, accepted by Astronomy & Astrophysic

    Formation of an ordered phase in neutron star matter

    Get PDF
    In this work, we explore the possible formation of ordered phases in hadronic matter, related to the presence of hyperons at high densities. We analyze a microscopic mechanism which can lead to the crystallization of the hyperonic sector by the confinement of the hyperons on the nodes of a lattice. For this purpose, we introduce a simplified model of the hadronic plasma, in which the nuclear interaction between protons, neutrons and hyperons is mediated by meson fields. We find that, for some reasonable sets of values of the model parameters, such ordered phases are energetically favoured as density increases beyond a threshold value.Comment: 16 pages, 14 figures, submitted to NP

    The Transfer of Federal Public Lands to Tribal Trust Ownership: Statutes and Cases from 1970 - 2020

    Get PDF
    Federal public lands in the United States are based on traditional Native American territory and aboriginal title. Some American Indian tribes are pursuing strategies of land restoration and transfer, which can in some instances include the reclassification of federal public lands to tribal trust status through congressional legislation. This research identifies statutes enacted by Congress from 1970 to 2020, extending from the historic return of Blue Lake to Taos Pueblo to the return of the National Bison Range to the Confederated Salish and Kootenai Tribes. Each law is assessed to determine common themes and provisions related to post-transfer management. These land administration requirements reflect the management priorities of Congress, the Tribe(s) involved, or both. Statutory provisions related to conservation, traditional purposes, nonmember access, development, consultation, and land use plans emerge as dominant themes. The preservation of valid existing rights is the most recurrent land administration theme among identified transfer legislation. Four laws and cases are analyzed more deeply to provide background, context, and detail: (1) Blue Lake on the Carson National Forest to Taos Pueblo, (2) the Western Oregon Tribal Fairness Act, (3) Chippewa National Forest land to the Leech Lake Band of Ojibwe, and (4) the National Bison Range to the Confederated Salish and Kootenai Tribes in Montana. These cases, and the larger catalog of transfer statutes, reveal great variation and complexity while raising important questions about land ownership and control

    Gravitomagnetism in superconductors and compact stars

    Full text link
    There are three experimentally observed effects in rotating superconductors that are so far unexplained. Some authors have tried to interpret such a phenomena as possible new gravitational properties of coherent quantum systems: in particular, they suggest that the gravitomagnetic field of that kind of matter may be many orders of magnitude stronger than the one expected in the standard theory. Here I show that this interpretation would be in conflict with the common belief that neutron stars have neutrons in superfluid state and protons in superconductive one.Comment: 9 pages, no figur

    Neutron spin polarization in strong magnetic fields

    Full text link
    The effects of strong magnetic fields on the inner crust of neutron stars are investigated after taking into account the anomalous magnetic moments of nucleons. Energy spectra and wave functions for protons and neutrons in a uniform magnetic field are provided. The particle spin polarizations and the yields of protons and neutrons are calculated in a free Fermi gas model. Obvious spin polarization occurs when B≥1014B\geq10^{14}G for protons and B≥1017B\geq10^{17}G for neutrons, respectively. It is shown that the neutron spin polarization depends solely on the magnetic field strength.Comment: Replaced by the revised version; 10 pages, including 3 eps figure

    First Order Kaon Condensation in Neutron Stars: Finite Size Effects in the Mixed Phase

    Get PDF
    We study the role of Coulomb and surface effects on the phase transition from dense nuclear matter to a mixed phase of nuclear and kaon-condensed matter. We calculate corrections to the bulk calculation of the equation of state (EOS) and the critical density for the transition by solving explicitly for spherical, cylindrical, and planar structures. The importance of Debye screening in the determination of the charged particle profiles is studied in some detail. We find that the surface and Coulomb contributions to the energy density are small, but that they play an important role in the determination of the critical pressure for the transition, as well as affecting the size and geometry of favored structures. This changes the EOS over a wide range of pressure and consequently increases the maximum mass by about 0.1 solar masses. Implications for transport properties of the mixed phase are also discussed.Comment: 18 pages, 6 figure

    Gravitomagnetic Resonance Shift due to a Slowly Rotating Compact Star

    Full text link
    The effect of a slowly rotating mass on a forced harmonic oscillator with two degrees of freedom is studied in the weak field approximation. It is found that according to the general theory of relativity there is a shift in the resonat frequency of the oscillator which depends on the density and rotational frequency of the gravitational source. The proposed shift is quite small under normal physical situations however it is estimated that for compact x-ray sources such as white dwarfs, pulsars, and neutron stars the shift is quite appreciable.Comment: 8 pages, 2 figures, Accepted for Publication in Inter. Journal of Modern Physics

    Stability of CFL cores in Hybrid Stars

    Full text link
    We study the equation state of strongly interacting quark matter within a NJL-like model in which the chiral condensates and the color superconducting gaps are computed self-consistently as a function of the baryon density. A vector interaction term is added to the Lagrangian in order to render the quark matter equation of state stiffer. For the low density hadronic phase we use a relativistic mean field model. The phase transition to quark matter is computed by a Maxwell construction. We show that stable CFL cores in hybrid stars are possible if the superconducting gap is sufficiently large. Moreover we find stable stellar configurations in which two phase transitions occur, a first transition from hadronic matter to 2SC quark matter and a second transition from 2SC quark matter to CFL quark matter.Comment: 10 pages, 6 figure

    Kaons production at finite temperature and baryon density in an effective relativistic mean field model

    Full text link
    We investigate the kaons production at finite temperature and baryon density by means of an effective relativistic mean-field model with the inclusion of the full octet of baryons. Kaons are considered taking into account of an effective chemical potential depending on the self-consistent interaction between baryons. The obtained results are compared with a minimal coupling scheme, calculated for different values of the anti-kaon optical potential.Comment: 3 pages, contribution presented to the International Conference on Exotic Atoms and Related Topic

    Sensitivity of the Moment of Inertia of Neutron Stars to the Equation of State of Neutron-Rich Matter

    Full text link
    The sensitivity of the stellar moment of inertia to the neutron-star matter equation of state is examined using accurately-calibrated relativistic mean-field models. We probe this sensitivity by tuning both the density dependence of the symmetry energy and the high density component of the equation of state, properties that are at present poorly constrained by existing laboratory data. Particularly attractive is the study of the fraction of the moment of inertia contained in the solid crust. Analytic treatments of the crustal moment of inertia reveal a high sensitivity to the transition pressure at the core-crust interface. This may suggest the existence of a strong correlation between the density dependence of the symmetry energy and the crustal moment of inertia. However, no correlation was found. We conclude that constraining the density dependence of the symmetry energy - through, for example, the measurement of the neutron skin thickness in 208Pb - will place no significant bound on either the transition pressure or the crustal moment of inertia.Comment: 25 pages, 8 figures, 5 table
    • …
    corecore