363 research outputs found

    A solvable model of a one-dimensional quantum gas with pair interaction

    Full text link
    We propose a solvable model of a one-dimensional harmonic oscillator quantum gas of two sorts of particles, fermions or bosons, which allows to describe the formation of pairs due to a suitable pair interaction. These pairs we call "pseudo-bosons" since the system can be approximated by an ideal bose gas for low temperatures. We illustrate this fact by considering the specific heat and the entropy function for N=8 pairs. The model can also be evaluated in the thermodynamic limit if the harmonic oscillator potential is suitable scaled

    Event generation with SHERPA 1.1

    Full text link
    In this paper the current release of the Monte Carlo event generator Sherpa, version 1.1, is presented. Sherpa is a general-purpose tool for the simulation of particle collisions at high-energy colliders. It contains a very flexible tree-level matrix-element generator for the calculation of hard scattering processes within the Standard Model and various new physics models. The emission of additional QCD partons off the initial and final states is described through a parton-shower model. To consistently combine multi-parton matrix elements with the QCD parton cascades the approach of Catani, Krauss, Kuhn and Webber is employed. A simple model of multiple interactions is used to account for underlying events in hadron--hadron collisions. The fragmentation of partons into primary hadrons is described using a phenomenological cluster-hadronisation model. A comprehensive library for simulating tau-lepton and hadron decays is provided. Where available form-factor models and matrix elements are used, allowing for the inclusion of spin correlations; effects of virtual and real QED corrections are included using the approach of Yennie, Frautschi and Suura.Comment: 47 pages, 21 figure

    Searching for Multijet Resonances at the LHC

    Full text link
    Recently it was shown that there is a class of models in which colored vector and scalar resonances can be copiously produced at the Tevatron with decays to multijet final states, consistent with all experimental constraints and having strong discovery potential. We investigate the collider phenomenology of TeV scale colored resonances at the LHC and demonstrate a strong discovery potential for the scalars with early data as well as the vectors with additional statistics. We argue that the signal can be self-calibrating and using this fact we propose a search strategy which we show to be robust to systematic errors typically expected from Monte Carlo background estimates. We model the resonances with a phenomenological Lagrangian that describes them as bound states of colored vectorlike fermions due to new confining gauge interactions. However, the phenomenological Lagrangian treatment is quite general and can represent other scenarios of microscopic physics as well.Comment: 28 pages, 13 figures, pdflatex. Discussion of background expanded, minor modifications made. Version to appear in JHE

    Friedel oscillations in a gas of interacting one-dimensional fermionic atoms confined in a harmonic trap

    Full text link
    Using an asymptotic phase representation of the particle density operator ρ^(z)\hat{\rho}(z) in the one-dimensional harmonic trap, the part δρ^F(z)\delta \hat{\rho}_F(z) which describes the Friedel oscillations is extracted. The expectation value with respect to the interacting ground state requires the calculation of the mean square average of a properly defined phase operator. This calculation is performed analytically for the Tomonaga-Luttinger model with harmonic confinement. It is found that the envelope of the Friedel oscillations at zero temperature decays with the boundary exponent ν=(K+1)/2\nu = (K+1)/2 away from the classical boundaries. This value differs from that known for open boundary conditions or strong pinning impurities. The soft boundary in the present case thus modifies the decay of Friedel oscillations. The case of two components is also discussed.Comment: Revised version to appear in Journal of Physics B: Atomic, Molecular and Optical Physic
    corecore