4 research outputs found

    Response of Sphagnum species mixtures to increased temperature and nitrogen availability

    No full text
    To predict the role of ombrotrophic bogs as carbon sinks in the future, it is crucial to understand how Sphagnum vegetation in bogs will respond to global change. We performed a greenhouse experiment to study the effects of two temperature treatments (17.5 and 21.7°C) and two N addition treatments (0 and 4 g N m-2 year-1) on the growth of four Sphagnum species from three geographically interspersed regions: S. fuscum, S. balticum (northern and central Sweden), S. magellanicum and S. cuspidatum (southern Sweden). We studied the growth and cover change in four combinations of these Sphagnum species during two growing seasons. Sphagnum height increment and production were affected negatively by high temperature and high N addition. However, the northern species were more affected by temperature, while the southern species were more affected by N addition. High temperature depressed the cover of the 'wet' species, S. balticum and S. cuspidatum. Nitrogen concentrations increased with high N addition. N:P and N:K ratios indicated P-limited growth in all treatments and co-limitation of P and K in the high N treatments. In the second year of the experiment, several containers suffered from a severe fungal infection, particularly affecting the 'wet' species and the high N treatment. Our findings suggest that global change can have negative consequences for the production of Sphagnum species in bogs, with important implications for the carbon sequestration in these ecosystems.</p

    Habitat use and diet of skylarks (<em>Alauda arvensis</em>) wintering in an intensive agricultural landscape of the Netherlands

    No full text
    In recent decades, Skylark (Alauda arvensis) populations in Europe have declined sharply due to agricultural intensification. Insufficient reproduction rates are one reason. Increased winter mortality may also be important, but studies outside the breeding season are scarce and mostly limited to the UK. We studied habitat selection of wintering Skylarks in an agricultural area in the Netherlands. We monitored Skylarks between November 2008 and March 2009 on 10 survey plots including 77 different arable fields and permanent grasslands and covering in total 480 ha. We simultaneously measured food availability, vegetation structure and field boundary characteristics. We also analysed 158 faecal pellets collected on potato and cereal stubble fields to relate Skylark diet to seasonal changes in food availability and foraging habitat. We show that cereal stubble fields larger than 4.3 ha, surrounded by no or low boundary vegetation and a density of dietary seeds of more than 860 seeds m(-2), were most suitable for wintering Skylarks. Skylark group densities were low on permanent grasslands and on maize stubble fields. Densities of dietary seeds were highest in soils of potato stubble fields followed by cereal stubble fields, grasslands and maize stubble fields. Skylarks showed a strong preference for cereal grains, but their proportion in the diet fell sharply at the end of November, indicating that cereal grains were depleted and birds had to switch to less profitable food sources, such as weed seeds and leaves. We conclude that Skylarks wintering in agricultural landscapes possibly suffer from a lack of energy-rich food sources and only a few fields provide sufficient food. Conservation measures should strive to improve the wintering situation by creating food-rich habitats such as over-winter stubble with a rich layer of weeds on large fields and localised in open areas
    corecore