51 research outputs found

    Extended scene deep learning wavefront sensing

    No full text
    We have applied a combination of blind deconvolution and deep learning to the processing of Shack-Hartmann images.By using the intensity information contained in spot positions, and the fine structure of the separate images created by the lenslets,we have increased the sensitivity and resolution of the sensor over the limit defined by standard processing of spot displacements only.We also have demonstrated the applicability of the method to wavefront sensing using extended objects as a reference. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team MuldersTeam Michel Verhaege

    Lensless coherent imaging by sampling of the optical field with digital micromirror device

    No full text
    We have experimentally demonstrated a lensless coherent microscope based on direct registration of the complex optical field by sampling the pupil with a sequence of two-point interferometers formed by a digital micromirror device. Complete registration of the complex amplitude in the pupil of the imaging system, without any reference beam, provides a convenient link between the experimental and computational optics. Unlike other approaches to digital holography, our method does not require any external reference beam, resulting in a simple and robust registration setup. Computer analysis of the experimentally registered field allows for focusing the image in the whole range from zero to infinity, and for virtual correction of the aberrations present in the real optical system, by applying the adaptive wavefront corrections to its virtual model

    Shack-Hartmann reflective micro profilometer

    No full text
    We present a quantitative phase imaging microscope based on a Shack-Hartmann sensor, that directly reconstructs the optical path difference (OPD) in reflective mode. Comparing with the holographic or interferometric methods, the SH technique needs no reference beam in the setup, which simplifies the system. With a preregistered reference, the OPD image can be reconstructed from a single shot. Also, the method has a rather relaxed requirement on the illumination coherence, thus a cheap light source such as a LED is feasible in the setup. In our previous research, we have successfully verified that a conventional transmissive microscope can be transformed into an optical path difference microscope by using a Shack-Hartmann wavefront sensor under incoherent illumination. The key condition is that the numerical aperture of illumination should be smaller than the numerical aperture of imaging lens. This approach is also applicable to characterization of reflective and slightly scattering surfaces.Team Raf Van de Pla

    Large volume holographic imaging for biological sample analysis

    No full text
    Significance: Particle field holography is a versatile technique to determine the size and distribution of moving or stationary particles in air or in a liquid without significant disturbance of the sample volume. Although this technique is applied in biological sample analysis, it is limited to small sample volumes, thus increasing the number of measurements per sample. In this work, we characterize the maximum achievable volume limit based on the specification of a given sensor to realize the development of a potentially low-cost, single-shot, large-volume holographic microscope.Aim: We present mathematical formulas that will aid in the design and development and improve the focusing speed for the numerical reconstruction of registered holograms in particle field holographic microscopes. Our proposed methodology has potential application in the detection of Schistosoma haematobium eggs in human urine samples.Approach: Using the Fraunhofer holography theory for opaque objects, we derived an exact formula for the maximum diffraction-limited volume for an in-line holographic setup. The proof-of-concept device built based on the derived formulas was experimentally validated with urine spiked with cultured Schistosoma haematobium eggs.Results: Results obtained show that for urine spiked with Schistosoma haematobium eggs, the volume thickness is limited to several millimeters due to scattering properties of the sample. The distances of the target particles could be estimated directly from the hologram fringes.Conclusion: The methodology proposed will aid in the development of large-volume holographic microscopes

    Phase retrieval from multiple binary masks generated speckle patterns

    No full text
    We present a reference-less and time-multiplexing phase retrieval method by making use of the digital micromirror device (DMD). In this method, the DMD functions not only as a flexible binary mask which modulates the optical field, but also as a sampling mask for measuring corresponding phases, which makes the whole setup simple and robust. The DMD reflection forms a sparse intensity mask in the pupil which produces speckle pattern after propagation. With the recorded intensity on the camera and the binary pattern on the DMD, the phase in all the ‘on’ pixels can be reconstructed at once by solving inverse problems with iterative methods, for instance using Gerchberg-Saxton algorithm. Then the phase of the whole pupil can be reconstructed from a series of binary patterns and speckle patterns. Numerical experiments show the feasibility of this phase retrieval method and the importance of sparse binary masks in the improving of convergence speed
    • …
    corecore