141 research outputs found

    Targeted therapy against Bcl-2-related proteins in breast cancer cells

    Get PDF
    INTRODUCTION: Bcl-2 and Bcl-xL confer resistance to apoptosis, thereby reducing the effectiveness of chemotherapy. We examined the relationship between the expression of Bcl-2 and Bcl-xL and chemosensitivity of breast cancer cells, with the aim of developing specific targeted therapy. METHODS: Four human breast cancer cell lines were examined, and the effects of antisense (AS) Bcl-2 and AS Bcl-xL phosphorothioate oligodeoxynucleotides (ODNs) on chemosensitivity were tested in vitro and in vivo. Chemosensitivity was evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay, and the antitumor effect was assessed in vivo by the success of xenograft transplantation into athymic mice. RESULTS: Treatment with AS Bcl-2 and Bcl-xL ODNs resulted in a sequence-specific decrease in protein expression, compared with controls. Treatment of BT-474, ZR-75-1, and MDA-MB-231 cells with AS Bcl-2 increased chemosensitivity to doxorubicin (DOX), mitomycin C (MMC), paclitaxel (TXL), and docetaxel (TXT). Transfection of the Bcl-2 gene into MDA-MB-453 cells decreased sensitivity to DOX and MMC. Treatment of MDA-MB-231, BT-474, and ZR-75-1 cells with AS Bcl-xL increased chemosensitivity to DOX, MMC and taxanes to a smaller extent than AS Bcl-2. This occurred in the setting of increased Bax and cleaved poly(ADP-ribose) polymerase, as well as decreased Bcl-2 and pAkt. AS Bcl-2 ODNs induced splenomegaly in association with increased serum IL-12, which was attenuated by methylation of the CpG motifs of AS Bcl-2; however, methylated CpG failed to negate the increased antitumor effect of AS Bcl-2. Bcl-2 and Bcl-xL, to a smaller extent, are major determinants of chemosensitivity in breast cancer cells. CONCLUSION: Targeted therapy against Bcl-2 protein with the use of AS ODNs might enhance the effects of chemotherapy in patients with breast cancer

    Viral Small Interfering RNAs Target Host Genes to Mediate Disease Symptoms in Plants

    Get PDF
    The Cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat) has a small non-protein-coding RNA genome that induces yellowing symptoms in infected Nicotiana tabacum (tobacco). How this RNA pathogen induces such symptoms has been a longstanding question. We show that the yellowing symptoms are a result of small interfering RNA (siRNA)-directed RNA silencing of the chlorophyll biosynthetic gene, CHLI. The CHLI mRNA contains a 22-nucleotide (nt) complementary sequence to the Y-Sat genome, and in Y-Sat-infected plants, CHLI expression is dramatically down-regulated. Small RNA sequencing and 5β€² RACE analyses confirmed that this 22-nt sequence was targeted for mRNA cleavage by Y-Sat-derived siRNAs. Transformation of tobacco with a RNA interference (RNAi) vector targeting CHLI induced Y-Sat-like symptoms. In addition, the symptoms of Y-Sat infection can be completely prevented by transforming tobacco with a silencing-resistant variant of the CHLI gene. These results suggest that siRNA-directed silencing of CHLI is solely responsible for the Y-Sat-induced symptoms. Furthermore, we demonstrate that two Nicotiana species, which do not develop yellowing symptoms upon Y-Sat infection, contain a single nucleotide polymorphism within the siRNA-targeted CHLI sequence. This suggests that the previously observed species specificity of Y-Sat-induced symptoms is due to natural sequence variation in the CHLI gene, preventing CHLI silencing in species with a mismatch to the Y-Sat siRNA. Taken together, these findings provide the first demonstration of small RNA-mediated viral disease symptom production and offer an explanation of the species specificity of the viral disease

    Alteration of the bZIP60/IRE1 Pathway Affects Plant Response to ER Stress in Arabidopsis thaliana

    Get PDF
    The Unfolded Protein Response (UPR) is elicited under cellular and environmental stress conditions that disrupt protein folding in the endoplasmic reticulum (ER). Through the transcriptional induction of genes encoding ER resident chaperones and proteins involved in folding, the pathway contributes to alleviating ER stress by increasing the folding capacity in the ER. Similarly to other eukaryotic systems, one arm of the UPR in Arabidopsis is set off by a non-conventional splicing event mediated by ribonuclease kinase IRE1b. The enzyme specifically targets mature bZIP60 RNA for cleavage, which results in a novel splice variant encoding a nuclear localized transcription factor. Although it is clear that this molecular switch widely affects the transcriptome, its exact role in overall plant response to stress has not been established and mutant approaches have not provided much insight. In this study, we took a transgenic approach to manipulate the pathway in positive and negative fashions. Our data show that the ER-resident chaperone BiP accumulates differentially depending on the level of activation of the pathway. In addition, phenotypes of the transgenic lines suggest that BiP accumulation is positively correlated with plant tolerance to chronic ER stress

    Mining of unexplored habitats for novel chitinasesβ€”chiA as a helper gene proxy in metagenomics

    Get PDF
    The main objective of this study was to assess the abundance and diversity of chitin-degrading microbial communities in ten terrestrial and aquatic habitats in order to provide guidance to the subsequent exploration of such environments for novel chitinolytic enzymes. A combined protocol which encompassed (1) classical overall enzymatic assays, (2) chiA gene abundance measurement by qPCR, (3) chiA gene pyrosequencing, and (4) chiA gene-based PCR-DGGE was used. The chiA gene pyrosequencing is unprecedented, as it is the first massive parallel sequencing of this gene. The data obtained showed the existence across habitats of core bacterial communities responsible for chitin assimilation irrespective of ecosystem origin. Conversely, there were habitat-specific differences. In addition, a suite of sequences were obtained that are as yet unregistered in the chitinase database. In terms of chiA gene abundance and diversity, typical low-abundance/diversity versus high-abundance/diversity habitats was distinguished. From the combined data, we selected chitin-amended agricultural soil, the rhizosphere of the Arctic plant Oxyria digyna and the freshwater sponge Ephydatia fluviatilis as the most promising habitats for subsequent bioexploration. Thus, the screening strategy used is proposed as a guide for further metagenomics-based exploration of the selected habitats

    Identification and Characterization of MicroRNAs in Asiatic Cotton (Gossypium arboreum L.)

    Get PDF
    To date, no miRNAs have been identified in the important diploid cotton species although there are several reports on miRNAs in upland cotton. In this study, we identified 73 miRNAs, belonging to 49 families, from Asiatic cotton using a well-developed comparative genome-based homologue search. Several of the predicted miRNAs were validated using quantitative real time PCR (qRT-PCR). The length of miRNAs varied from 18 to 22 nt with an average of 20 nt. The length of miRNA precursors also varied from 46 to 684 nt with an average of 138 Β±120 nt. For a majority of Asiatic cotton miRNAs, there is only one member per family; however, multiple members were identified for miRNA 156, 414, 837, 838, 1044, 1533, 2902, 2868, 5021 and 5142 families. Nucleotides A and U were dominant, accounted for 62.95%, in the Asiatic cotton pre-miRNAs. The Asiatic cotton pre-miRNAs had high negative minimal folding free energy (MFE) and adjusted MFE (AMFE) and high MFE index (MFEI). Many miRNAs identified in Asiatic cotton suggest that miRNAs also play a similar regulatory mechanism in diploid cotton

    DRB2 Is Required for MicroRNA Biogenesis in Arabidopsis thaliana

    Get PDF
    Background The Arabidopsis thaliana (Arabidopsis) DOUBLE-STRANDED RNA BINDING (DRB) protein family consists of five members, DRB1 to DRB5. The biogenesis of two developmentally important small RNA (sRNA) species, the microRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) by DICER-LIKE (DCL) endonucleases requires the assistance of DRB1 and DRB4 respectively. The importance of miRNA-directed target gene expression in plant development is exemplified by the phenotypic consequence of loss of DRB1 activity (drb1 plants). Principal Findings Here we report that the developmental phenotype of the drb235 triple mutant plant is the result of deregulated miRNA biogenesis in the shoot apical meristem (SAM) region. The expression of DRB2, DRB3 and DRB5 in wild-type seedlings is restricted to the SAM region. Small RNA sequencing of the corresponding tissue of drb235 plants revealed altered miRNA accumulation. Approximately half of the miRNAs detected remained at levels equivalent to those of wild-type plants. However, the accumulation of the remaining miRNAs was either elevated or reduced in the triple mutant. Examination of different single and multiple drb mutants revealed a clear association between the loss of DRB2 activity and altered accumulation for both the elevated and reduced miRNA classes. Furthermore, we show that the constitutive over-expression of DRB2 outside of its wild-type expression domain can compensate for the loss of DRB1 activity in drb1 plants. Conclusions/Significance Our results suggest that in the SAM region, DRB2 is both antagonistic and synergistic to the role of DRB1 in miRNA biogenesis, adding an additional layer of gene regulatory complexity in this developmentally important tissue

    Conservation of the role of INNER NO OUTER in development of unitegmic ovules of the Solanaceae despite a divergence in protein function

    Get PDF
    The P-SlINO::SlINO-GFP transgene continues to be expressed after fertilization during the onset of fruit development. A-C: Ovules from P-SlINO::SlINO-GFP plants. D, E: Ovules from control plants. Images A (confocal) and B (DIC overlaid with GFP channel) show expression in the outer cell layer in an ovule post-anthesis. C-E are images of the surface cells of the integument of ovules taken from 3–4Β mm fruits. C and D are images taken on an epifluorescence microscope (Axioplan) using a Chroma GFP filter set 41017 (Chroma, Bellows Falls, VT). E is a dark-field image of the same ovule in D. These images show expression is present in developing fruit. Scale bar in B represents 20Β ΞΌm, scale bar in E represents 20Β ΞΌm in C-E. (TIF 4435Β kb

    Identification and characterization of 27 conserved microRNAs in citrus

    Get PDF
    MicroRNAs (miRNAs) are a class of non-protein-coding small RNAs. Considering the conservation of many miRNA genes in different plant genomes, the identification of miRNAs from non-model organisms is both practicable and instrumental in addressing miRNA-guided gene regulation. Citrus is an important staple fruit tree, and publicly available expressed sequence tag (EST) database for citrus are increasing. However, until now, little has been known about miRNA in citrus. In this study, 27 known miRNAs from Arabidopsis were searched against citrus EST databases for miRNA precursors, of which 13 searched precursor sequences could form fold-back structures similar with those of Arabidopsis. The ubiquitous expression of those 13 citrus microRNAs and other 13 potential citrus miRNAs could be detected in citrus leaf, young shoot, flower, fruit and root by northern blotting, and some of them showed differential expression in different tissues. Based on the fact that miRNAs exhibit perfect or nearly perfect complementarity with their target sequences, a total of 41 potential targets were identified for 15 citrus miRNAs. The majority of the targets are transcription factors that play important roles in citrus development, including leaf, shoot, and root development. Additionally, some other target genes appear to play roles in diverse physiological processes. Four target genes have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in Poncirus trifoliate. Overall, this study in the identification and characterization of miRNAs in citrus can initiate further study on citrus miRNA regulation mechanisms, and it can help us to know more about the important roles of miRNAs in citrus

    Characterization of microRNAs Identified in a Table Grapevine Cultivar with Validation of Computationally Predicted Grapevine miRNAs by miR-RACE

    Get PDF
    BACKGROUND: Alignment analysis of the Vv-miRNAs identified from various grapevine cultivars indicates that over 30% orthologous Vv-miRNAs exhibit a 1-3 nucleotide discrepancy only at their ends, suggesting that this sequence discrepancy is not a random event, but might mainly derive from divergence of cultivars. With advantages of miR-RACE technology in determining precise sequences of potential miRNAs from bioinformatics prediction, the precise sequences of vv-miRNAs predicted computationally can be verified with miR-RACE in a different grapevine cultivar. This presents itself as a new approach for large scale discovery of precise miRNAs in different grapevine varieties. METHODOLOGY/PRINCIPAL FINDINGS: Among 88 unique sequences of Vv-miRNAs from bioinformatics prediction, 83 (96.3%) were successfully validated with MiR-RACE in grapevine cv. 'Summer Black'. All the validated sequences were identical to their corresponding ones obtained from deep sequencing of the small RNA library of 'Summer Black'. Quantitative RT-PCR analysis of the expressions levels of 10 Vv-miRNA/target gene pairs in grapevine tissues showed some negative correlation trends. Finally, comparison of Vv-miRNA sequences with their orthologs in Arabidopsis and study on the influence of divergent bases of the orthologous miRNAs on their targeting patterns in grapevine were also done. CONCLUSION: The validation of precise sequences of potential Vv-miRNAs from computational prediction in a different grapevine cultivar can be a new way to identify the orthologous Vv-miRNAs. Nucleotide discrepancy of orthologous Vv-miRNAs from different grapevine cultivars normally does not change their target genes. However, sequence variations of some orthologous miRNAs in grapevine and Arabidopsis can change their targeting patterns. These precise Vv-miRNAs sequences validated in our study could benefit some further study on grapevine functional genomics
    • …
    corecore