770 research outputs found
Mechanisms of Surviving Burial: Dune Grass Interspecific Differences Drive Resource Allocation After Sand Deposition
Sand dunes are important geomorphic formations of coastal ecosystems that are critical in protecting human populations that live in coastal areas. Dune formation is driven by ecomorphodynamic interactions between vegetation and sediment deposition. While there has been extensive research on responses of dune grasses to sand burial, there is a knowledge gap in understanding mechanisms of acclimation between similar, coexistent, dune-building grasses such as Ammophila breviligulata (C3), Spartina patens (C4), and Uniola paniculata (C4). Our goal was to determine how physiological mechanisms of acclimation to sand burial vary between species. We hypothesize that (1) in the presence of burial, resource allocation will be predicated on photosynthetic pathway and that we will be able to characterize the C3 species as a root allocator and the C4 species as leaf allocators. We also hypothesize that (2) despite similarities between these species in habitat, growth form, and life history, leaf, root, and whole plant traits will vary between species when burial is not present. Furthermore, when burial is present, the existing variability in physiological strategy will drive species-specific mechanisms of survival. In a greenhouse experiment, we exposed three dune grass species to different burial treatments: 0 cm (control) and a one-time 25-cm burial to mimic sediment deposition during a storm. At the conclusion of our study, we collected a suite of physiological and morphological functional traits. Results showed that Ammophila decreased allocation to aboveground biomass to maintain root biomass, preserving photosynthesis by allocating nitrogen (N) into light-exposed leaves. Conversely, Uniola and Spartina decreased allocation to belowground production to increase elongation and maintain aboveground biomass. Interestingly, we found that species were functionally distinct when burial was absent; however, all species became more similar when treated with burial. In the presence of burial, species utilized functional traits of rapid growth strategy, although mechanisms of change were interspecifically variable
Partial Description of Quantum States
One of the most central and controversial element of quantum mechanics is the
use of non zero vectors of a Hilbert space (or, more generally, of one
dimension subspaces) for representing the state of a quantum system. In
particular, the question whether such a representation is complete has been
debated since almost the early days of quantum mechanics. In this article, we
develop an alternate way to formalize knowledge about the state of quantum
systems, based solely on experimentally accessible elements, namely on outcomes
of finite measurements. We introduce what we call partial description which,
given a feasible measurement, indicates some outcomes which are known to be
impossible (i.e. known to have a probability equal to 0 to occur) and hence
have to be discarded. Then, we introduce partial states (which are partial
descriptions providing as much information as possible) and compare this way to
describe quantum states to the orthodox one, using vector rays. Finally, we
show that partial states allow to describe quantum states in a strictly more
expressive way that the orthodox description does
Time Asymmetric Quantum Physics
Mathematical and phenomenological arguments in favor of asymmetric time
evolution of micro-physical states are presented.Comment: Tex file with 2 figure
Quantum value indefiniteness
The indeterministic outcome of a measurement of an individual quantum is
certified by the impossibility of the simultaneous, definite, deterministic
pre-existence of all conceivable observables from physical conditions of that
quantum alone. We discuss possible interpretations and consequences for quantum
oracles.Comment: 19 pages, 2 tables, 2 figures; contribution to PC0
On the lattice structure of probability spaces in quantum mechanics
Let C be the set of all possible quantum states. We study the convex subsets
of C with attention focused on the lattice theoretical structure of these
convex subsets and, as a result, find a framework capable of unifying several
aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent
principle. We also encounter links with entanglement witnesses, which leads to
a new separability criteria expressed in lattice language. We also provide an
extension of a separability criteria based on convex polytopes to the infinite
dimensional case and show that it reveals interesting facets concerning the
geometrical structure of the convex subsets. It is seen that the above
mentioned framework is also capable of generalization to any statistical theory
via the so-called convex operational models' approach. In particular, we show
how to extend the geometrical structure underlying entanglement to any
statistical model, an extension which may be useful for studying correlations
in different generalizations of quantum mechanics.Comment: arXiv admin note: substantial text overlap with arXiv:1008.416
Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. epâeÏ+n
Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive
Ï
+
electroproduction reaction
Îł
â
p
â
n
Ï
+
. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is
1.1
<
W
<
3
GeV and
1
<
Q
2
<
6
GeV
2
. Results were obtained for about 6000 bins in
W
,
Â
Q
2
,
Â
cos
(
Ξ
â
)
, and
Ï
â
. Except at forward angles, very large target-spin asymmetries are observed over the entire
W
region. Reasonable agreement is found with phenomenological fits to previous data for
W
<
1.6
GeV, but very large differences are seen at higher values of
W
. A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of
Q
2
, for resonances with masses as high as 2.4 GeV
Beam-target helicity asymmetry for ÎłânââÏâp in the N*resonance region
We report the first beam-target double-polarization asymmetries in the Îł ĂŸ nĂ°pĂ â Ïâ ĂŸ pĂ°pĂ reaction
spanning the nucleon resonance region from invariant mass W Œ 1500 to 2300 MeV. Circularly polarized
photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the
CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been
extracted using three very different analyses that show excellent agreement, and these have been used to
deduce the E polarization observable for an effective neutron target. These results have been incorporated
into new partial wave analyses and have led to significant revisions for several ÎłnN* resonance
photocouplings
Decoherence, the measurement problem, and interpretations of quantum mechanics
Environment-induced decoherence and superselection have been a subject of
intensive research over the past two decades, yet their implications for the
foundational problems of quantum mechanics, most notably the quantum
measurement problem, have remained a matter of great controversy. This paper is
intended to clarify key features of the decoherence program, including its more
recent results, and to investigate their application and consequences in the
context of the main interpretive approaches of quantum mechanics.Comment: 41 pages. Final published versio
Clinical map document based on XML (cMDX): document architecture with mapping feature for reporting and analysing prostate cancer in radical prostatectomy specimens
<p>Abstract</p> <p>Background</p> <p>The pathology report of radical prostatectomy specimens plays an important role in clinical decisions and the prognostic evaluation in Prostate Cancer (PCa). The anatomical schema is a helpful tool to document PCa extension for clinical and research purposes. To achieve electronic documentation and analysis, an appropriate documentation model for anatomical schemas is needed. For this purpose we developed cMDX.</p> <p>Methods</p> <p>The document architecture of cMDX was designed according to Open Packaging Conventions by separating the whole data into template data and patient data. Analogue custom XML elements were considered to harmonize the graphical representation (e.g. tumour extension) with the textual data (e.g. histological patterns). The graphical documentation was based on the four-layer visualization model that forms the interaction between different custom XML elements. Sensible personal data were encrypted with a 256-bit cryptographic algorithm to avoid misuse. In order to assess the clinical value, we retrospectively analysed the tumour extension in 255 patients after radical prostatectomy.</p> <p>Results</p> <p>The pathology report with cMDX can represent pathological findings of the prostate in schematic styles. Such reports can be integrated into the hospital information system. "cMDX" documents can be converted into different data formats like text, graphics and PDF. Supplementary tools like cMDX Editor and an analyser tool were implemented. The graphical analysis of 255 prostatectomy specimens showed that PCa were mostly localized in the peripheral zone (Mean: 73% ± 25). 54% of PCa showed a multifocal growth pattern.</p> <p>Conclusions</p> <p>cMDX can be used for routine histopathological reporting of radical prostatectomy specimens and provide data for scientific analysis.</p
- âŠ