100 research outputs found

    Spin noise in quantum dot ensembles

    Full text link
    We study theoretically spin fluctuations of resident electrons or holes in singly charged quantum dots. The effects of external magnetic field and effective fields caused by the interaction of electron and nuclei spins are analyzed. The fluctuations of spin Faraday, Kerr and ellipticity signals revealing the spin noise of resident charge carriers are calculated for the continuous wave probing at the singlet trion resonance.Comment: 8 pages, 4 figure

    Electron Spin Dynamics in Impure Quantum Wells for Arbitrary Spin-Orbit Coupling

    Full text link
    Strong interest has arisen recently on low-dimensional systems with strong spin-orbit interaction due to their peculiar properties of interest for some spintronic applications. Here, the time evolution of the electron spin polarization of a disordered two-dimensional electron gas is calculated exactly within the Boltzmann formalism for arbitrary couplings to a Rashba spin-orbit field. The classical Dyakonov-Perel mechanism of spin relaxation is shown to fail for sufficiently strong Rashba fields, in which case new regimes of spin decay are identified. These results suggest that spin manipulation can be greatly improved in strong spin-orbit interaction materials.Comment: 5 pages, 2 figures -revised versio

    Non-Markovian spin relaxation in two-dimensional electron gas

    Full text link
    We analyze by Monte-Carlo simulations and analytically spin dynamics of two-dimensional electron gas (2DEG) interacting with short-range scatterers in nonquantizing magnetic fields. It is shown that the spin dynamics is non-Markovian with the exponential spin relaxation followed by the oscillating tail due to the electrons residing on the closed trajectories. The tail relaxes on a long time scale due to an additional smooth random potential and inelastic processes. The developed analytical theory and Monte-Carlo simulations are in the quantitative agreement with each other.Comment: 6 pages, 3 figure

    Non-exponential spin relaxation in magnetic field in quantum wells with random spin-orbit coupling

    Full text link
    We investigate the spin dynamics of electrons in quantum wells where the Rashba type of spin-orbit coupling is present in the form of random nanosize domains. We study the effect of magnetic field on the spin relaxation in these systems and show that the spatial randomness of spin-orbit coupling limits the minimum relaxation rate and leads to a Gaussian time-decay of spin polarization due to memory effects. In this case the relaxation becomes faster with increase of the magnetic field in contrast to the well known magnetic field suppression of spin relaxation.Comment: published version, minor change
    • …
    corecore