4 research outputs found

    Energy spectrum and current-phase relation of a nanowire Josephson junction close to the topological transition

    No full text
    A semiconducting nanowire proximitized by an s-wave superconductor can be tuned into a topological state by an applied magnetic field. This quantum phase transition is marked by the emergence of Majorana zero modes at the ends of the wire. The fusion of Majorana modes at a junction between two nanowires results in a 4Ď€-periodic Josephson effect. We elucidate how the 4Ď€ periodicity arises across the topological phase transition in a highly-transparent short nanowire junction. Owing to a high transmission coefficient, Majorana zero modes coming from different wires are strongly coupled, with an energy scale set by the proximity-induced, field-independent pairing potential. At the same time, the topological spectral gap-defined by competition between superconducting correlations and Zeeman splitting-becomes narrow in the vicinity of the transition point. The resulting hybridization of the fused Majorana states with the spectral continuum strongly affects the electron density of states at the junction and its Josephson energy. We study the manifestations of this hybridization in the energy spectrum and phase dependence of the Josephson current. We pinpoint the experimentally observable signatures of the topological phase transition, focusing on junctions with weak backscattering.QRD/Kouwenhoven La

    Quantum critical dynamics of a Josephson junction at the topological transition

    No full text
    We find the admittance of a Josephson junction at or near a topological transition. The dependence of the admittance on frequency and temperature at the critical point is universal and determined by the symmetries of the system. Despite the absence of a spectral gap at the transition, the dissipative response may remain weak at low energies: . This behavior is strikingly different from the electromagnetic response of a normal metal. Away from the critical point, the scaling functions for the dependence of the admittance on frequency and temperature are controlled by at most two parameters.BUS/Quantum Delf

    Unified numerical approach to topological semiconductor-superconductor heterostructures

    No full text
    We develop a unified numerical approach for modeling semiconductor-superconductor heterostructures. All the key physical ingredients of these systems - orbital effect of magnetic field, superconducting proximity effect, and electrostatic environment - are taken into account on equal footing in a realistic device geometry. As a model system, we consider indium arsenide (InAs) nanowires with an epitaxial aluminum (Al) shell, which is one of the most promising platforms for Majorana zero modes. We demonstrate qualitative and quantitative agreement of the obtained results with the existing experimental data. Finally, we characterize the topological superconducting phase emerging in a finite magnetic field and calculate the corresponding topological phase diagram.QRD/Wimmer La

    Microwave spectroscopy of spinful Andreev bound states in ballistic semiconductor Josephson junctions

    Get PDF
    The superconducting proximity effect in semiconductor nanowires has recently enabled the study of new superconducting architectures, such as gate-tunable superconducting qubits and multiterminal Josephson junctions. As opposed to their metallic counterparts, the electron density in semiconductor nanosystems is tunable by external electrostatic gates, providing a highly scalable and in situ variation of the device properties. In addition, semiconductors with large g-factor and spin-orbit coupling have been shown to give rise to exotic phenomena in superconductivity, such as † 0 Josephson junctions and the emergence of Majorana bound states. Here, we report microwave spectroscopy measurements that directly reveal the presence of Andreev bound states (ABS) in ballistic semiconductor channels. We show that the measured ABS spectra are the result of transport channels with gate-tunable, high transmission probabilities up to 0.9, which is required for gate-tunable Andreev qubits and beneficial for braiding schemes of Majorana states. For the first time, we detect excitations of a spin-split pair of ABS and observe symmetry-broken ABS, a direct consequence of the spin-orbit coupling in the semiconductor.QRD/Kouwenhoven LabQuTechQRD/Geresdi La
    corecore