181 research outputs found

    One loop graviton corrections to dynamical photons in de Sitter

    Full text link
    We employ a recent, general gauge computation of the one loop graviton contribution to the vacuum polarization on de Sitter to solve for one loop corrections to the photon mode function. The vacuum polarization takes the form of a gauge independent, spin 2 contribution and a gauge dependent, spin 0 contribution. We show that the leading secular corrections derive entirely from the spin 2 contribution.Comment: 41 pages, no figures, uses LaTeX2

    Single Graviton Loop Contribution to the Self-Mass of a Massless, Conformally Coupled Scalar on de Sitter Background

    Full text link
    We use a simplified formalism to re-compute the single graviton loop contribution to the self-mass of a massless, conformally coupled scalar on de Sitter background which was originally made by Boran, Kahya and Park [1-3]. Our result resolves the problem with the flat space correspondence limit that was pointed out by Fr\"ob [4]. We discuss how this computation will be used in a long-term project to purge the linearized effective field equation of gauge dependence.Comment: 26 pages, 1 figure, uses LaTeX 2e. Version 2 revised slightly for publicatio

    Graviton Loop Corrections to Vacuum Polarization in de Sitter in a General Covariant Gauge

    Full text link
    We evaluate the one-graviton loop contribution to the vacuum polarization on de Sitter background in a 1-parameter family of exact, de Sitter invariant gauges. Our result is computed using dimensional regularization and fully renormalized with BPHZ counterterms, which must include a noninvariant owing to the time-ordered interactions. Because the graviton propagator engenders a physical breaking of de Sitter invariance two structure functions are needed to express the result. In addition to its relevance for the gauge issue this is the first time a covariant gauge graviton propagator has been used to compute a noncoincident loop. A number of identities are derived which should facilitate further graviton loop computations.Comment: 61 pages, 1 figure, 11 tables, version 2 (63 pages) revised for publication in CQ

    Graviton Propagator in a 2-Parameter Family of de Sitter Breaking Gauges

    Full text link
    We formulate the graviton propagator on de Sitter background in a 2-parameter family of simple gauges which break de Sitter invariance. Explicit results are derived for the first order perturbations in each parameter. These results should be useful in computations to check for gauge dependence of graviton loop corrections.Comment: 23 pages, 1 table, uses LaTeX2e, version 2 slightly revised for publicatio

    Breaking of scaling symmetry by massless scalar on de Sitter

    Full text link
    We study the response of a classical massless minimally coupled scalar to a static point scalar charge on de Sitter. By considering explicit solutions of the problem we conclude that -- even though the dynamics formally admits dilatation (scaling) symmetry -- the physical scalar field profile necessarily breaks the symmetry. This is an instance of symmetry breaking in classical physics due to large infrared effects. The gravitational backreaction, on the other hand, does respect dilatation symmetry, making this an example of symmetry non-inheritance phenomenon.Comment: 10 page

    One-loop Graviton Corrections to Conformal Scalars on a de Sitter Background

    Full text link
    We exploit a recent computation of one graviton loop corrections to the self-mass [1] to quantum-correct the field equation for a massless, conformally coupled scalar on a de Sitter background. With the obvious choice for the finite part of the R2ϕ2R^2 \phi^2 counterterm, we find that neither plane wave mode functions nor the response to a point source acquires large infrared logarithms. However, we do find a decaying logarithmic correction to the mode function and a short distance logarithmic running of the potential in addition to the power-law effect inherited from flat space.Comment: 25 pages, 2 figures; published versio

    Explaining Large Electromagnetic Logarithms from Loops of Inflationary Gravitons

    Full text link
    Recent progress on nonlinear sigma models on de Sitter background has permitted the resummation of large inflationary logarithms by combining a variant of Starobinsky's stochastic formalism with a variant of the renormalization group. We reconsider single graviton loop corrections to the photon wave function, and to the Coulomb potential, in light of these developments. Neither of the two 1-loop results have a stochastic explanation, however, the flow of a curvature-dependent field strength renormalization explains their factors of ln(a)\ln(a). We speculate that the factor of ln(Hr)\ln(Hr) in the Coulomb potential should not be considered as a leading logarithm effect.Comment: 22 pages, uses LaTeX2e, slightly revised for publicatio
    corecore