70 research outputs found

    Parameters affecting enzyme-assisted aqueous extraction of extruded sunflower meal

    Get PDF
    Microscopic observation of sunflower meal before and after extraction indicated that extensive cellular disruption was achieved by extrusion, but that unextracted oil remained sequestered as coalesced oil within the void spaces of disrupted cotyledon cells. A full factorial design experiment was defined to develop aqueous extraction processing (AEP) with and without enzymes to improve vegetable oil extraction yields of extruded sunflower meal. This experimental design studied the influence of four parameters, agitation, liquid/solid (L/S) ratio, and cellulase and protease addition, on extraction yield of lipid and protein. Agitation and addition of cellulases increased oil extraction yield, indicating that emulsification of oil and alteration of the geometry of the confining cellular matrix were important mechanisms for improving yields. Protease and liquid-solid ratio of the extraction mixture did not have significant effects, indicating key differences with previously established soy oil extraction mechanisms. Maximum yields attained for oil and protein extraction were 39% and 90%, respectively, with the aid of a surfactant

    Enzymatic hydrolysis of corn gluten meal

    Get PDF
    Corn gluten meal was hydrolyzed with Alcalase 2.4L, an alkaline protease. The effects of enzyme concentration and gluten size reduction on the hydrolysis were studied. Extent of reaction was expressed in terms of both the degree of hydrolysis (using the pH-stat technique) and the concentration of soluble protein. Linear and product inhibition kinetic models were compared to the experimental results after parameter estimation by minimizing the residual sum of squares. The models describe the time-dependent behavior of three protein/peptide pools-insoluble protein, TCA-insoluble proteins, and TCA-soluble peptides. A simplified product inhibition model gave the best fit to the experimental data

    Mechanisms of Aqueous Extraction of Soybean Oil

    Get PDF
    Aqueous extraction processing (AEP) of soy is a promising green alternative to hexane extraction processing. To improve AEP oil yields, experiments were conducted to probe the mechanisms of oil release. Microscopy of extruded soy before and after extraction with and without protease indicated that unextracted oil is sequestered in an insoluble matrix of denatured protein and is released by proteolytic digestion of this matrix. In flour from flake, unextracted oil is contained as intact oil bodies in undisrupted cells, or as coalesced oil droplets too large to pass out of the disrupted cellular matrix. Our results suggest that emulsification is an important extraction mechanism that reduces the size of these droplets and increases yield. Protease and SDS were both successful in increasing extraction yields. We propose that this is because they disrupt a viscoelastic protein film at the droplet interface, facilitating droplet disruption. An extraction model based on oil droplet coalescence and the formation of a viscoelastic film was able to fit kinetic extraction data well

    Production of fatty-acyl-glutamate biosurfactant by Bacillus subtilis on soybean co-products

    Get PDF
    Fatty-acyl-glutamate (FA-Glu), a surfactin variant has been successfully produced using a genetically modified strain of Bacillus subtilis grown on glucose. However, yields with soybean hulls (SBH) replacing glucose were lower. This work was undertaken to reduce the yield loss when using SBH as the carbon source and to evaluate two other soy by-products, namely fiber and skim from aqueous oil extraction as alternative carbon and nitrogen sources. Fermentation of soybean hulls, fibers and skim at various concentrations produced lower FA-Glu titers compared to S-7 medium. Neither increasing their amount nor supplementing with glucose increased the FA-Glu titer, suggesting the presence of an inhibitor in these feedstocks. By using a mixture of polysaccharide-degrading enzymes, over 65% of SBH solids were converted to soluble carbohydrates. FA-Glu titers obtained from SBH hydrolysates containing residual hull solids were still low; however, with the removal of the solids, cell growth improved and FA-Glu yield was 60% higher than with glucose. Thus, this low-cost material can be converted to a substrate for production of FA-Glu biosurfactant. Unmodified fiber and skim components of aqueous oil extraction were not beneficial
    corecore