13,394 research outputs found

    Noise measurements at Stockton Airport obtained during engineering evaluation of two-segment approaches in a 727-222 aircraft

    Get PDF
    The results of acoustic measurements made on a 727-222 aircraft during standard ILS and two-segment approaches are presented. The aircraft was equipped with a special purpose glide slope computer to provide the capability of making two-segment noise abatement approaches. For upper segment computations, the computer used barometric-corrected pressure altitude and the slant range to a DME transmitter which was colocated with the glide slope transmitter. The computer used the ILS glide slope deviation for lower segment computations. Additional measurements were made on 737 revenue aircraft using the Stockton Airport. The purpose of the acoustical portion of the test was to measure and identify the noise levels during the various approaches

    Procedure for implementation of temperature-dependent mechanical property capability in the Engineering Analysis Language (EAL) system

    Get PDF
    A procedure is presented to allow the use of temperature dependent mechanical properties in the Engineering Analysis Language (EAL) System for solid structural elements. This is accomplished by including a modular runstream in the main EAL runstream. The procedure is applicable for models with multiple materials and with anisotropic properties, and can easily be incorporated into an existing EAL runstream. The procedure (which is applicable for EAL elastic solid elements) is described in detail, followed by a description of the validation of the routine. A listing of the EAL runstream used to validate the procedure is included in the Appendix

    Aerothermal tests of spherical dome protuberances on a flat plate at a Mach number of 6.5

    Get PDF
    Aerothermal tests were conducted in the Langley 8-Foot High-Temperature Tunnel at a Mach number of 6.5 on a series of spherical dome protuberances mounted on a flat-plate test apparatus. Detailed surface pressure and heating-rate distributions were obtained for various dome heights and diameters submerged in both laminar and turbulent boundary layers including a baseline geometric condition representing a thermally bowed metallic thermal protection system (TPS) tile. The present results indicated that the surface pressures on the domes were increased on the windward surface and reduced on the leeward surface as predicted by linearized small-perturbation theory, and the distributions were only moderately affected by boundary-layer variations. Surface heating rates for turbulent flow increased on the windward surface and decreased on the leeward surface similar to the pressure; but for laminar boundary layers, the heating rates remained high on the leeward surface, probably due to local transition. Transitional flow effects cause heat load augmentation to increase by 30 percent for the maximum dome height in a laminar boundary layer. However, the corresponding augmentation for a dome with a height of 0.1 in. and a diameter of 14 in. representative of a bowed TPS tile was 14 percent or less for either a laminar or turbulent boundary layer

    Implosion-driven shock tube

    Get PDF
    Detonation wave striking PETN explosive shell producing implosion or implosion wave in shock tub

    Noise measurements taken at LAX during operational evaluation of two-segment approaches in a 727-200 aircraft

    Get PDF
    A series of seven noise measurements were made each day over a period of fifteen days. The first and last flights each day were made by a specially instrumented 727-200 aircraft being used to evaluate the operational effectiveness of two-segment noise abatement approaches in scheduled service. Noise measurements were made to determine the noise reduction benefits of the two-segment approaches

    Inhibition of monocyte complement receptor enhancement by low molecular weight material from human lung cancers

    Get PDF
    We have studied the effect of dialysates from lung cancer homogenates to alter both the expression of complement (C3b) receptors per se and also to inhibit leucoattractant-induced enhancement of complement rosettes on monocytes from healthy individuals. Enhancement and enhancement-inhibition by tumour extracts were compared with material derived from normal lung excised from distance from the tumour. There was no significant difference between tumour homogenate (TH) and normal lung homogenate (NLH) in terms of enhancement of complement rosettes per se. In contrast, TH produced a dose- and time-dependent inhibition of leucoattractant-induced enhancement of C3b rosettes which was significantly different from that obtained with NLH. This enhancement-inhibition was observed with four undifferentiated, four squamous and three adenocarcinomas of lung. The degree of enhancement-inhibition was not related to the type of tumour or varying accompanying histological features such as necrosis and the degree of infiltration with inflammatory cells. Following gel filtration on Sephadex G-50 each type of cancer gave a major peak of inhibitory activity which eluted with molecules having an apparent molecular size of approximately 3,000 daltons. A second larger peak (8,000-10,000 daltons) was also detected with extracts from the undifferentiated and adenocarcinomas. These results support previous findings, mainly from experimental animals, indicating that 'anti-macrophage/monocyte principles' are elaborated from certain tumour types

    High-Stakes Testing and Student Achievement: Problems for the No Child Left Behind Act

    Get PDF
    Under the federal No Child Left Behind Act of 2001 (NCLB), standardized test scores are the indicator used to hold schools and school districts accountable for student achievement. Each state is responsible for constructing an accountability system, attaching consequences -- or stakes -- for student performance. The theory of action implied by this accountability program is that the pressure of high-stakes testing will increase student achievement. But this study finds that pressure created by high-stakes testing has had almost no important influence on student academic performance

    Perfect periodic scheduling for binary tree routing in wireless networks

    Get PDF
    In this paper we tackle the problem of coordinating transmission of data across a Wireless Mesh Network. The single task nature of mesh nodes imposes simultaneous activation of adjacent nodes during transmission. This makes the coordinated scheduling of local mesh node traffic with forwarded traffic across the access network to the Internet via the Gateway notoriously difficult. Moreover, with packet data the nature of the coordinated transmission schedule has a big impact upon both the data throughput and energy consumption. Perfect Periodic Scheduling, in which each demand is itself serviced periodically, provides a robust solution. In this paper we explore the properties of Perfect Periodic Schedules with modulo arithmetic using the Chinese Remainder Theorem. We provide a polynomial time, optimisation algorithm, when the access network routing tree has a chain or binary tree structure. Results demonstrate that energy savings and high throughput can be achieved simultaneously. The methodology is generalisable
    corecore