39 research outputs found

    Advances in residential design related to the influence of geomagnetism

    Get PDF
    : Since the origin of the Modern Movement, there has been a basic commitment to improving housing conditions and the well-being of occupants, especially given the prediction that 2/3 of humanity will reside in cities by 2050. Moreover, a compact model of the city with tall buildings and urban densification at this scale will be generated. Continuous constructive and technological advances have developed solid foundations on safety, energy efficiency, habitability, and sustainability in housing design. However, studies on improving the quality of life in these areas continue to be a challenge for architects and engineers. This paper seeks to contribute health-related information to the study of residential design, specifically the influence of the geomagnetic field on its occupants. After compiling information on the effects of geomagnetic fields from different medical studies over 23 years, a case study of a 16-story high-rise building is presented, with the goal of proposing architectural design recommendations for long-term occupation in the same place. The purpose of the present work is three-fold: first, to characterize the geomagnetic field variability of buildings; second, to identify the causes and possible related mechanisms; and third, to define architectural criteria on the arrangement of uses and constructive elements for housing

    Multi-Platform Detection of Small Ruminant Lentivirus Antibodies and Provirus as Biomarkers of Production Losses

    Get PDF
    Small ruminant lentiviruses (SRLVs) are endemic in most areas of Europe, causing a chronic infection and a multisystemic disease affecting the udder, carpal joints, lungs, and central nervous system. Due to the lack of treatments and protective vaccination strategies, infection control is focused on the identification of infected animals through serological or molecular techniques. However, antigenic and genetic heterogeneity of SRLVs represent a clear drawback for diagnosis. Infected animals may present lower animal production parameters such as birth weight or milk production and quality, depending on productive systems considered and, likely, to the diagnostic method applied. In this study, four sheep flocks dedicated to dairy or meat production were evaluated using three different ELISA and two PCR strategies to classify animal population according to SRLV infection status. Productive parameters were recorded along one whole lactation or reproductive period and compared between positive and negative animals. SRLV was present in 19% of the total population, being unequally distributed in the different flocks. Less than half of the infected animals were detected by a single diagnostic method, highlighting the importance of combining different diagnostic techniques. Statistical analysis employing animal classification using all the diagnostic methods associated lambing size, lamb weight at birth, and daily weight gain with SRLV infection status in meat flocks. Milk production, somatic cell count, fat, and protein content in the milk were associated with SRLV infection in dairy flocks, to a greater extent in the flock showing higher seroprevalence. A multi-platform SRLV diagnostic strategy was useful for ensuring correct animal classification, thus validating downstream studies investigating production traits

    Enhanced insulin signalling ameliorates C9orf72 hexanucleotide repeat expansion toxicity in Drosophila

    Get PDF
    G4C2 repeat expansions within the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The repeats undergo repeat-associated non-ATG translation to generate toxic dipeptide repeat proteins. Here, we show that insulin/Igf signalling is reduced in fly models of C9orf72 repeat expansion using RNA-sequencing of adult brain. We further demonstrate that activation of insulin/Igf signalling can mitigate multiple neurodegenerative phenotypes in flies expressing either expanded G4C2 repeats or the toxic dipeptide repeat protein poly-GR. Levels of poly-GR are reduced when components of the insulin/Igf signalling pathway are genetically activated in the diseased flies, suggesting a mechanism of rescue. Modulating insulin signalling in mammalian cells also lowers poly-GR levels. Remarkably, systemic injection of insulin improves the survival of flies expressing G4C2 repeats. Overall, our data suggest that modulation of insulin/Igf signalling could be an effective therapeutic approach against C9orf72 ALS/FTD

    C9orf72 arginine-rich dipeptide proteins interact with ribosomal proteins in vivo to induce a toxic translational arrest that is rescued by eIF1A.

    Get PDF
    A GGGGCC hexanucleotide repeat expansion within the C9orf72 gene is the most common genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Sense and antisense repeat-containing transcripts undergo repeat-associated non-AUG-initiated translation to produce five dipeptide proteins (DPRs). The polyGR and polyPR DPRs are extremely toxic when expressed in Drosophila neurons. To determine the mechanism that mediates this toxicity, we purified DPRs from the Drosophila brain and used mass spectrometry to identify the in vivo neuronal DPR interactome. PolyGR and polyPR interact with ribosomal proteins, and inhibit translation in both human iPSC-derived motor neurons, and adult Drosophila neurons. We next performed a screen of 81 translation-associated proteins in GGGGCC repeat-expressing Drosophila to determine whether this translational repression can be overcome and if this impacts neurodegeneration. Expression of the translation initiation factor eIF1A uniquely rescued DPR-induced toxicity in vivo, indicating that restoring translation is a potential therapeutic strategy. These data directly implicate translational repression in C9orf72 repeat-induced neurodegeneration and identify eIF1A as a novel modifier of C9orf72 repeat toxicity

    Ar Broces vārdu – tālajā Budapeštā

    Full text link
    Small ruminant lentivirus (SRLV) belonging to the highly divergent genotype E has recently been identified in the Italian goat breed Roccaverano. In this report we have developed a specific serological test based on recombinant matrix/capsid antigen fusion protein. Performance has been evaluated and compared with a similar test based on genotype B antigen. Herds under study were selected according to the infectious status characterized by blood PCR and sequencing. Results clearly showed that B and E based recombinant ELISA only detected homologous infection and an apparent cross-reactivity was recorded in a herd in which co-infection was present. Three commercially available ELISAs showed different abilities in detecting genotype E infection, being the whole virus-based immunoassay the best choice. Genotype E-recombinant antigen was not detected in ELISA by three commercially available Mabs known to be cross-reactive among CAEV and MVV capsid antigens, further supporting the high divergence of the E genotype from others. Finally, a SRLV-free herd according to commercial ELISA testing, was analysed in the same area where genotype E was identified and few animals belonging to Roccaverano breed were found slightly reactive with the E antigens. Our results suggest that the prevalence of genotype E in other small ruminant populations may be conveniently estimated using a comparative assay based on a combination of genotype specific recombinant antigens and may highlight a wider space in which SRLVs evolve. © 2009 Elsevier B.V. All rights reserved.This work was supported by Regione Piemonte: Ricerca Scientifica Applicata 2008 and Italian MIUR.Peer reviewe
    corecore