7 research outputs found
Nitric oxide modulates interleukin-2-induced proliferation in CTLL-2 cells
The role of the L-arginine–nitric oxide metabolic pathway was explored for interleukin-2-induced proliferation in the cytotoxic T lymphocyte clone CTLL-2. Specific inhibition of nitric oxide synthase significantly diminished, in a concentration-dependent manner, 3H-thymidine uptake of CTLL-2 cells in response to different concentrations of interleukin 2. Withdrawal of L-arginine from culture medium resulted as potent as the higher inhibition obtained when blocking nitric oxide synthase with L-arginine analogues. Furthermore, intermedial concentrations of Larginine and exogenous nitric oxide donors were found for achieving optimal IL2-induced proliferation of CTLL-2. These findings prompted us to suggest that intra- and/or inter-cellular nitric oxide signalling may contribute to the modulation of the IL2 mitogenic effect upon cytotoxic T lymphocytes
Lobenzarit disodium inhibits the constitutive NO–cGMP metabolic pathways. Possible involvement as an immunomodulatory drug
Lobenzarit disodtulIl (CCA) is a novel immunomodulatory drug useful in the treatment of chronic inflammations. Its principal mechanism of action seems to be through enhancing the T suppressor/T helper lymphocyte ratio. However, the molecular basis for these actions remains unclear. In this study it was found that CCA inhibits the production of guanosine 3',5'-cyclic monophosphate almost completely when present in concentrations of 1 mM. Further results demonstrated that such inhibition could also be explained by interference in constitutive nitric oxide generation. In addition to previous findings, more insight into the molecular mechanism of action of CCA is provided
Parallel ecological filtering of ultramafic soils in three distant island floras
International audienceAim: Alexander von Humboldt observed that plant communities on different continents but under similar climatic conditions shared few common species but often contained representatives of the same genera or higher taxonomic groups. To test if this observation can be extended to substrate type, we explored whether a phylogenetic signature could be seen among floras growing on ultramafic substrates that present challenging edaphic conditions for plant growth and are well-known for their distinctive vegetation. Location: Cuba, Madagascar, New Caledonia. Taxon Angiosperms. Methods We compared the floras of Cuba, Madagascar and New Caledonia to test whether the same plant families were under- or over-represented on the ultramafic substrates of the three islands. Results: Pairwise comparisons showed that plant orders and families tended to have the same behaviour on the three islands, i.e. ultramafic substrates filtered (in favour of or against) the same plant groups in the three biogeographical distinct areas. The COM clade (comprising Celastrales, Oxalidales and Malpighiales) appears to be over-represented on ultramafic substrates in all three islands and contains over half of the world's known nickel hyperaccumulators. Main conclusions: Our analyses provide support for Humboldt's observation by showing that ecological sorting can favour the same plant lineages in similar environments in different biogeographical regions
Oligosaccharins and Pectimorf® Stimulate Root Elongation and Shorten the Cell Cycle in Higher Plants
The aim was to test promotive effects of oligosaccharins on root growth and development at the root apical meristem and the cell cycle using the model systems, Arabidopsis thaliana and the tobacco (Nicotiana tabacum) BY-2 cell line. Arabidopsis was grown on medium supplemented with 0.1 mg L−1 oligoxyloglucan (OX), 10 mg L−1 Pectimorf® (P) or 0.5 mg L−1 indole butyric acid (IBA). Primary root length, number of lateral root primordia, root apical meristem (RAM) length and epidermal cell length were recorded. Three genotypes were used: wild type (WT) and transgenic lines expressing either Schizosaccharomyces pombe (Sp) cdc25 or over-expressing(oe) Arath;WEE1. All treatments promoted primary root elongation but repressed lateral root production. Only P had a clear positive effect on meristem length whereas all other genotype × treatment interactions showed shorter RAMs. Whilst IBA, OX and P induced an increase in cell length in Spcdc25, the same treatments caused a significant decrease in WEE1 oe . Mitotic indices were also significantly higher in roots treated with oligosaccharins suggesting a shortening of the cell cycle. This hypothesis was tested in the BY-2 cell line. Both OX and P shortened the cell cycle exclusively through a shortening of G1 whilst mitotic cell size remained constant between treatments. In conclusion, both OX and P do indeed stimulate growth and shorten the cell cycle in higher plants and at the cellular level are able to reverse large and small cell size phenotypes normally exhibited by WEE1 oe and Spcdc25 genotypes, respectively