44 research outputs found

    Worldwide impacts of landscape anthropization on mosquito abundance and diversity: A meta-analysis.

    Get PDF
    In recent decades, the emergence and resurgence of vector-borne diseases have been well documented worldwide, especially in tropical regions where protection and defense tools for human populations are still very limited. In this context, the dynamics of pathogens are influenced by landscape anthropization (i.e., urbanization, deforestation, and agricultural development), and one of the mechanisms through which this occurs is a change in the abundance and/or diversity of the vectors. An increasing number of empirical studies have described heterogeneous effects of landscape anthropization on vector communities; therefore, it is difficult to have an overall picture of these effects on a global scale. Here, we performed a meta-analysis to quantify the impacts of landscape anthropization on a global scale on the presence/abundance and diversity of mosquitoes, the most important arthropods affecting human health. We obtained 338 effect sizes on 132 mosquito species, compiled from 107 studies in 52 countries that covered almost every part of the world. The results of the meta-analysis showed an overall decline of mosquito presence/abundance and diversity in response to urbanization, deforestation, and agricultural development, except for a few mosquito species that have been able to exploit landscape anthropization well. Our results highlighted that these few favored mosquito species are those of global concern. They, thus, provide a better understanding of the overall effect of landscape anthropization on vector communities and, more importantly, suggest a greater risk of emergence and transmission of vector-borne diseases in human-modified landscapes

    Avian malaria and bird humoral immune response.

    Get PDF
    Plasmodium parasites are known to impose fitness costs on their vertebrate hosts. Some of these costs are due to the activation of the immune response, which may divert resources away from self-maintenance. Plasmodium parasites may also immuno-deplete their hosts. Thus, infected individuals may be less able to mount an immune response to a new pathogen than uninfected ones. However, this has been poorly investigated. The effect of Plasmodium infection on bird humoral immune response when encountering a novel antigen was tested. A laboratory experiment was conducted on canaries (Serinus canaria) experimentally infected with Plasmodium relictum (lineage SGS1) under controlled conditions. Birds were immune challenged with an intra-pectoral injection of a novel non-pathogenic antigen (keyhole limpet haemocyanin, KLH). One week later they were challenged again. The immune responses to the primary and to the secondary contacts were quantified as anti-KLH antibody production via enzyme-linked immunosorbent assay (ELISA). There was no significant difference in antibody production between uninfected and Plasmodium infected birds at both primary and secondary contact. However, Plasmodium parasite intensity in the blood increased after the primary contact with the antigen. There was no effect of Plasmodium infection on the magnitude of the humoral immune response. However, there was a cost of mounting an immune response in infected individuals as parasitaemia increased after the immune challenge, suggesting a trade-off between current control of chronic Plasmodium infection and investment against a new immune challenge

    Last-come, best served? Mosquito biting order and Plasmodium transmission

    Get PDF
    International audienceA pervasive characteristic of parasite infections is their tendency to be overdispersed. Understanding the mechanisms underlying this overdispersed distribution is of key importance as it may impact the transmission dynamics of the pathogen. Although multiple factors ranging from environmental stochasticity to inter-individual heterogeneity may explain parasite overdispersion, parasite infection is also overdispersed in an inbred host population maintained under laboratory conditions, suggesting that other mechanisms are at play. Here, we show that the aggregated distribution of malaria parasites within mosquito vectors is partially explained by a temporal heterogeneity in parasite infectivity triggered by the bites of mosquitoes. Parasite transmission tripled between the mosquito's first and last blood feed in a period of only 3 h. Surprisingly, the increase in transmission is not associated with an increase in parasite investment in production of the transmissible stage. Overall, we highlight that Plasmodium is capable of responding to the bites of mosquitoes to increase its own transmission at a much faster pace than initially thought and that this is partly responsible for overdispersed distribution of infection. We discuss the underlying mechanisms as well as the broader implications of this plastic response for the epidemiology of malaria

    Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed.

    Get PDF
    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely

    Detection of Invasive Mosquito Vectors Using Environmental DNA (eDNA) from Water Samples.

    Get PDF
    Repeated introductions and spread of invasive mosquito species (IMS) have been recorded on a large scale these last decades worldwide. In this context, members of the mosquito genus Aedes can present serious risks to public health as they have or may develop vector competence for various viral diseases. While the Tiger mosquito (Aedes albopictus) is a well-known vector for e.g. dengue and chikungunya viruses, the Asian bush mosquito (Ae. j. japonicus) and Ae. koreicus have shown vector competence in the field and the laboratory for a number of viruses including dengue, West Nile fever and Japanese encephalitis. Early detection and identification is therefore crucial for successful eradication or control strategies. Traditional specific identification and monitoring of different and/or cryptic life stages of the invasive Aedes species based on morphological grounds may lead to misidentifications, and are problematic when extensive surveillance is needed. In this study, we developed, tested and applied an environmental DNA (eDNA) approach for the detection of three IMS, based on water samples collected in the field in several European countries. We compared real-time quantitative PCR (qPCR) assays specific for these three species and an eDNA metabarcoding approach with traditional sampling, and discussed the advantages and limitations of these methods. Detection probabilities for eDNA-based approaches were in most of the specific comparisons higher than for traditional survey and the results were congruent between both molecular methods, confirming the reliability and efficiency of alternative eDNA-based techniques for the early and unambiguous detection and surveillance of invasive mosquito vectors. The ease of water sampling procedures in the eDNA approach tested here allows the development of large-scale monitoring and surveillance programs of IMS, especially using citizen science projects

    Sex-biased parasitism in vector-borne disease: Vector preference?

    Get PDF
    Sex-biased infections are a recurrent observation in vertebrates. In many species, males are more parasitized than females. Two potentially complementary mechanisms are often suggested to explain this pattern: sexual differences in susceptibility mainly caused by the effect of sex hormones on immunity and differential exposure to parasites. Exposure is mostly a consequence of host behavioural traits, but vector-borne parasitic infections involve another degree of complexity due to the active role of vectors in transmission. Blood-sucking insects may make choices based on cues produced by hosts. Regarding malaria, several studies highlighted a male-biased infection by Plasmodium sp in great tits (Parus major). We hypothesize that the mosquito vector, Culex pipiens, might at least partially cause this bias by being more attracted to male birds. Intrinsic variation associated to bird sex would explain a preference of mosquitoes for males. To test this hypothesis, we provide uninfected mosquitoes with a choice between uninfected male and female nestlings. Mosquito choice is assessed by sex typing of the ingested blood. We did not observe any preference for a given sex. This result does not support our prediction of a preference of mosquitoes for male great tits during the nestling period. In conclusion, mosquitoes do not seem to have an intrinsic preference for male nestlings. However, sexually divergent traits (e.g. behaviour, odour, metabolic rate) present in adults may play a role in the attraction of mosquitoes and should be investigated

    Latrocimicinae completes the phylogeny of Cimicidae: meeting old morphologic data rather than modern host phylogeny.

    Get PDF
    The family Cimicidae includes obligate hematophagous ectoparasites (bed bugs and their relatives) with high veterinary/medical importance. The evolutionary relationships of Cimicidae and their hosts have recently been reported in a phylogenetic context, but in the relevant study, one of the six subfamilies, the bat-specific Latrocimicinae, was not represented. In this study the only known species of Latrocimicinae, i.e., Latrocimex spectans, was analyzed with molecular and phylogenetic methods based on four (two nuclear and two mitochondrial) genetic markers. The completed subfamily-level phylogeny of Cimicidae showed that Latrocimicinae is most closely related to Haematosiphoninae (ectoparasites of birds and humans), with which it shares systematically important morphologic characters, but not hosts. Moreover, in the phylogenetic analyses, cimicid bugs that are known to infest phylogenetically distant bat hosts clustered together (e.g., Leptocimex and Stricticimex within Cacodminae), while cimicid subfamilies (Latrocimicinae, Primicimicinae) that are known to infest bat hosts from closely related superfamilies clustered distantly. In conclusion, adding Latrocimicinae significantly contributed to the resolution of the phylogeny of Cimicidae. The close phylogenetic relationship between Latrocimicinae and Haematosiphoninae is consistent with long-known morphologic data. At the same time, phylogenetic relationships of genera within subfamilies are inconsistent with the phylogeny of relevant hosts

    Laboulbeniales (Fungi: Ascomycota) infection of bat flies (Diptera: Nycteribiidae) from Miniopterus schreibersii across Europe.

    Get PDF
    Bat flies (Diptera: Nycteribiidae and Streblidae) are obligate, blood-sucking ectoparasites of bats with specialized morphology, life-cycle and ecology. Bat flies are occasionally infected by different species of Laboulbeniales (Fungi: Ascomycota), microscopic fungal ectoparasites belonging to three genera: Arthrorynchus spp. are restricted to the Eastern Hemisphere, while species of Gloeandromyces and Nycteromyces occur on Neotropical bat flies. Little is known about the distribution and host specificity of Arthrorynchus spp. on bat flies. In this study, we focused on sampling bat flies from the cave-dwelling bat species Miniopterus schreibersii. Bat and ectoparasite collection took place in Albania, Croatia, Hungary, Italy, Portugal, Slovakia, Spain and Switzerland. Flies were inspected for Laboulbeniales infections. Six hundred sixty seven bat flies of five species were collected: Nycteribia latreillii, N. pedicularia, N. schmidlii, Penicillidia conspicua, and P. dufourii. Laboulbeniales infection was observed on 60 specimens (prevalence = 9%). Two Laboulbeniales species, Arthrorhynchus eucampsipodae and A. nycteribiae, were present on three bat fly species. All observations of A. eucampsipodae were on N. schmidlii, and A. nycteribiae was present on P. conspicua and P dufourii. Arthrorhynchus eucampsipodae is, for the first time, reported from Slovakia and Spain. Arthrorhynchus nycteribiae represents a new country record for Portugal and Slovakia. There were no significant differences among infection rates in different countries. Females of N. schmidlii showed a higher infection rate than males with an observable trend (P = 0.0502). No sex differences in infection rate for P. conspicua and P. dufourii were detected. Finally, thallus density was significantly lower in N. schmidlii compared to P. conspicua and P. dufourii. With this study, we contribute to the knowledge of the geographical distribution and host specificity of Laboulbeniales fungi associated with ectoparasitic bat flies within Europe. We discuss parasite prevalence and host specificity in the light of our findings and the available literature. Penicillidia conspicua is unambiguously the main host species for A. nycteribiae based on our and previous findings. Differences in parasite intensity and sex-biased infections of the fungi are possible depending on the species

    A molecular analysis of the Afrotropical Baetidae

    Get PDF
    Recent work on the Afrotropical Baetidae has resulted in a number of important taxonomic changes: several polyphyletic genera have been split and more than 30 new Afrotropical genera have been established. In order to test their phylogenetic relevance and to clarify the suprageneric relationships, we reconstructed the first comprehensive molecular phylogeny of the Afrotropical Baetidae. We sequenced a total of ca. 2300 bp from nuclear (18S) and mitochondrial (12S and 16S) gene regions from 65 species belonging to 26 genera. We used three different approaches of phylogeny reconstruction: direct optimization, maximum parsimony and maximum likelihood. The molecular reconstruction indicates the Afrotropical Baetidae require a global revision at a generic as well as suprageneric level. Only four of the 12 genera were monophyletic when represented by more than one species in the analysis. Historically, two conflicting concepts of the suprageneric classification of Afrotropical Baetidae were proposed. One was based on the gathering of sister genera into complexes and the other on the division of the family into a restricted number of subfamilies. According to our reconstruction, neither is completely satisfactory: the major complexes of genera present in Africa are either paraphyletic or polyphyletic and the division of the Afrotropical Baetidae into two subfamilies is probably too simplified
    corecore