41 research outputs found
Recommended from our members
Kinetic Modeling of Slow Energy Release in Non-Ideal Carbon Rich Explosives
We present here the first self-consistent kinetic based model for long time-scale energy release in detonation waves in the non-ideal explosive LX-17. Non-ideal, insensitive carbon rich explosives, such as those based on TATB, are believed to have significant late-time slow release in energy. One proposed source of this energy is diffusion-limited growth of carbon clusters. In this paper we consider the late-time energy release problem in detonation waves using the thermochemical code CHEETAH linked to a multidimensional ALE hydrodynamics model. The linked CHEETAH-ALE model dimensional treats slowly reacting chemical species using kinetic rate laws, with chemical equilibrium assumed for species coupled via fast time-scale reactions. In the model presented here we include separate rate equations for the transformation of the un-reacted explosive to product gases and for the growth of a small particulate form of condensed graphite to a large particulate form. The small particulate graphite is assumed to be in chemical equilibrium with the gaseous species allowing for coupling between the instantaneous thermodynamic state and the production of graphite clusters. For the explosive burn rate a pressure dependent rate law was used. Low pressure freezing of the gas species mass fractions was also included to account for regions where the kinetic coupling rates become longer than the hydrodynamic time-scales. The model rate parameters were calibrated using cylinder and rate-stick experimental data. Excellent long time agreement and size effect results were achieved
Recommended from our members
Equation of state for high explosives detonation products with explicit polar and ionic species
We introduce a new thermodynamic theory for detonation products that includes polar and ionic species. The new formalism extends the domain of validity of the previously developed EXP6 equation of state library and opens the possibility of new applications. We illustrate the scope of the new approach on PETN detonation properties and water ionization models
Passive and Active Oxidation of Si(100) by Atomic Oxygen: A Theoretical Study of Possible Reaction Mechanisms
Reaction mechanisms for oxidation of the Si(100) surface by atomic oxygen were studied with high-level quantum mechanical methods in combination with a hybrid QM/MM (Quantum mechanics/Molecular Mechanics) method. Consistent with previous experimental and theoretical results, three structures, “back-bond”, “on-dimer”, and “dimer-bridge”, are found to be the most stable initial surface products for O adsorption (and in the formation of SiO2 films, i.e., passive oxidation). All of these structures have significant diradical character. In particular, the “dimer-bridge” is a singlet diradical. Although the ground state of the separated reactants, O+Si(100), is a triplet, once the O atom makes a chemical bond with the surface, the singlet potential energy surface is the ground state. With mild activation energy, these three surface products can be interconverted, illustrating the possibility of the thermal redistribution among the initial surface products. Two channels for SiO desorption (leading to etching, i.e., active oxidation) have been found, both of which start from the back-bond structure. These are referred to as the silicon-first (SF) and oxygen-first (OF) mechanisms. Both mechanisms require an 89.8 kcal/mol desorption barrier, in good agreement with the experimental estimates of 80−90 kcal/mol. “Secondary etching” channels occurring after initial etching may account for other lower experimental desorption barriers. The calculated 52.2 kcal/mol desorption barrier for one such secondary etching channel suggests that the great variation in reported experimental barriers for active oxidation may be due to these different active oxidation channels
Recommended from our members
Quantitative Molecular Thermochemistry Based on Path Integrals
The calculation of thermochemical data requires accurate molecular energies and heat capacities. Traditional methods rely upon the standard harmonic normal mode analysis to calculate the vibrational and rotational contributions. We utilize path integral Monte Carlo (PIMC) for going beyond the harmonic analysis, to calculate the vibrational and rotational contributions to ab initio energies. This is an application and extension of a method previously developed in our group
Recommended from our members
Recent Advances in Modeling Hugoniots with Cheetah
We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots