1,156 research outputs found

    Pencil-Beam Surveys for Faint Trans-Neptunian Objects

    Get PDF
    We have conducted pencil-beam searches for outer solar system objects to a limiting magnitude of R ~ 26. Five new trans-neptunian objects were detected in these searches. Our combined data set provides an estimate of ~90 trans-neptunian objects per square degree brighter than ~ 25.9. This estimate is a factor of 3 above the expected number of objects based on an extrapolation of previous surveys with brighter limits, and appears consistent with the hypothesis of a single power-law luminosity function for the entire trans-neptunian region. Maximum likelihood fits to all self-consistent published surveys with published efficiency functions predicts a cumulative sky density Sigma(<R) obeying log10(Sigma) = 0.76(R-23.4) objects per square degree brighter than a given magnitude R.Comment: Accepted by AJ, 18 pages, including 6 figure

    A Possible Divot in the Size Distribution of the Kuiper Belt's Scattering Objects

    Full text link
    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we measure the form of the scattering object's size distribution. Ruling out a single power-law at greater than 99% confidence, we constrain the form of the size distribution and find that, surprisingly, our analysis favours a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, with the number of smaller objects then rising again as expected via collisional equilibrium. Extrapolating at this collisional equilibrium slope produced enough kilometer-scale scattering objects to supply the nearby Jupiter-Family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now "frozen in" to portions of the Kuiper Belt sharing a "hot" orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's scattering-object inclination distribution, the supply source that was scattered outward must have already been vertically heated to of order 10 degrees.Comment: accepted 2013 January 8; published 2013 January 22 21 pages, 4 figure

    Constraints on the Orbital Evolution of Triton

    Full text link
    We present simulations of Triton's post-capture orbit that confirm the importance of Kozai-type oscillations in its orbital elements. In the context of the tidal orbital evolution model, these variations require average pericenter distances much higher than previously published, and the timescale for the tidal orbital evolution of Triton becomes longer than the age of the Solar System. Recently-discovered irregular satellites present a new constraint on Triton's orbital history. Our numerical integrations of test particles indicate a timescale for Triton's orbital evolution to be less than 10510^5 yrs for a reasonable number of distant satellites to survive Triton's passage. This timescale is inconsistent with the exclusively tidal evolution (time scale of >108>10^8 yrs), but consistent with the interestion with the debris from satellite-satellite collisions. Any major regular satellites will quickly collide among themselves after being perturbed by Triton, and the resulting debris disk would eventually be swept up by Triton; given that the total mass of the Uranian satellite system is 40% of that of Triton, large scale evolution is possible. This scenario could have followed either collisional or the recently-discussed three-body-interaction-based capture.Comment: 10 pages, 4 figures, accepted for ApJ

    Using long-term transit timing to detect terrestrial planets

    Get PDF
    We propose that the presence of additional planets in extrasolar planetary systems can be detected by long-term transit timing studies. If a transiting planet is on an eccentric orbit then the presence of another planet causes a secular advance of the transiting planet's pericenter over and above the effect of general relativity. Although this secular effect is impractical to detect over a small number of orbits, it causes long-term differences in when future transits occur, much like the long-term decay observed in pulsars. Measuring this transit-timing delay would thus allow the detection of either one or more additional planets in the system or the first measurements of non-zero oblateness (J2J_2) of the central stars.Comment: 10 pages, 5 figures, accepted by Monthly Notices, updated to reflect accepted versio

    Consequences of a Distant Massive Planet on the Large Semi-major Axis Trans-Neptunian Objects

    Get PDF
    We explore the distant giant planet hypothesis by integrating the large semi-major axis, large pericenter Trans-Neptunian Objects (TNOs) in the presence of the giant planets and an external perturber whose orbit is consistent with the proposed distant, eccentric, and inclined giant planet, so called planet 9. We find that TNOs with semi-major axes greater than 250 au experience some longitude of perihelion shepherding, but that a generic outcome of such evolutions is that the TNOs evolve to larger pericenter orbits, and commonly get raised to retrograde inclinations. This pericenter and inclination evolution requires a massive disk of TNOs (tens of M_\Earth) in order to explain the detection of the known sample today. Some of the highly inclined orbits produced by the examined perturbers will be inside of the orbital parameter space probed by prior surveys, implying a missing signature of the 9th planet scenario. The distant giant planet scenarios explored in this work do not reproduce the observed signal of simultaneous clustering in argument of pericenter, longitude of the ascending node, and longitude of perihelion in the region of the known TNOs

    The Kuiper Belt Luminosity Function from m(R)=21 to 26

    Get PDF
    We have performed an ecliptic imaging survey of the Kuiper belt with our deepest and widest field achieving a limiting flux of m(g') = 26.4, with a sky coverage of 3.0 square-degrees. This is the largest coverage of any other Kuiper belt survey to this depth. We detect 72 objects, two of which have been previously observed. We have improved the Bayesian maximum likelihood fitting technique presented in Gladman et al. (1998) to account for calibration and sky density variations and have used this to determine the luminosity function of the Kuiper belt. Combining our detections with previous surveys, we find the luminosity function is well represented by a single power-law with slope alpha = 0.65 +/- 0.05 and an on ecliptic sky density of 1 object per square-degree brighter than m(R)=23.42 +/- 0.13. Assuming constant albedos, this slope suggests a differential size-distribution slope of 4.25 +/- 0.25, which is steeper than the Dohnanyi slope of 3.5 expected if the belt is in a state of collisional equilibrium. We find no evidence for a roll-over or knee in the luminosity function and reject such models brightward of m(R) ~ 24.6.Comment: 50 Pages, 8 Figure

    Prediction and benefits of minimal disease activity in patients with psoriatic arthritis and active skin disease in the ADEPT trial

    Get PDF
    Objectives: To determine the proportion of patients with psoriatic arthritis in the Adalimumab Effectiveness in Psoriatic Arthritis trial achieving minimal disease activity (MDA) and its individual components at 1 or more visits over 144 weeks, identify baseline predictors of MDA achievement, and evaluate the association of MDA status with independent quality of life (QoL)-related patient-reported outcomes (PROs). Methods: Univariate and multivariate analyses were used to identify the baseline characteristics that predicted achievement of MDA at individual time points (weeks 12 through 144) or sustained MDA (achievement of MDA at 2 consecutive time points 12 weeks apart). The association of independent QoL-related PROs with MDA achievement was evaluated at weeks 24 and 144. Results: In univariate analyses, higher baseline patient assessment of pain, tender joint count (TJC), enthesitis and Health Assessment Questionnaire-Disability Index (HAQ-DI) score were significantly associated with lower likelihood of achieving MDA at later time points. Multivariate analyses confirmed higher baseline HAQ-DI as a significant predictor for failure to achieve MDA at later time points. Achievement of sustained MDA was associated with lower baseline TJC and HAQ-DI score. Achievement of different MDA components appeared to be treatment dependent. MDA achievers had significantly better QoL-related PROs and greater improvements in PROs from baseline to week 24 compared with non-achievers. Conclusions: Higher HAQ-DI score was the most consistent baseline factor that decreased the likelihood of achieving MDA and sustained MDA at later time points. Achieving MDA was associated with better independent QoL-related PROs

    Accretion in the Early Kuiper Belt II. Fragmentation

    Full text link
    We describe new planetesimal accretion calculations in the Kuiper Belt that include fragmentation and velocity evolution. All models produce two power law cumulative size distributions, N_C propto r^{-q}, with q = 2.5 for radii less than 0.3-3 km and q = 3 for radii exceeding 1-3 km. The power law indices are nearly independent of the initial mass in the annulus, the initial eccentricity of the planetesimal swarm, and the initial size distribution of the planetesimal swarm. The transition between the two power laws moves to larger radii as the initial eccentricity increases. The maximum size of objects depends on their intrinsic tensile strength; Pluto formation requires a strength exceeding 300 erg per gram. Our models yield formation timescales for Pluto-sized objects of 30-40 Myr for a minimum mass solar nebula. The production of several `Plutos' and more than 10^5 50 km radius Kuiper Belt objects leaves most of the initial mass in 0.1-10 km radius objects that can be collisionally depleted over the age of the solar system. These results resolve the puzzle of large Kuiper Belt objects in a small mass Kuiper Belt.Comment: to appear in the Astronomical Journal (July 1999); 54 pages including 7 tables and 13 figure
    • …
    corecore