27 research outputs found

    Thymosin β4 and prothymosin α promote cardiac regeneration post-ischaemic injury in mice

    Get PDF
    Aims The adult mammalian heart is a post-mitotic organ. Even in response to necrotic injuries, where regeneration would be essential to reinstate cardiac structure and function, only a minor percentage of cardiomyocytes undergo cytokinesis. The gene programme that promotes cell division within this population of cardiomyocytes is not fully understood. In this study, we aimed to determine the gene expression profile of proliferating adult cardiomyocytes in the mammalian heart after myocardial ischaemia, to identify factors to can promote cardiac regeneration. Methods and results Here, we demonstrate increased 5-ethynyl-2’deoxyuridine incorporation in cardiomyocytes 3 days post-myocardial infarction in mice. By applying multi-colour lineage tracing, we show that this is paralleled by clonal expansion of cardiomyocytes in the border-zone of the infarcted tissue. Bioinformatic analysis of single-cell RNA sequencing data from cardiomyocytes at 3 days post ischaemic injury revealed a distinct transcriptional profile in cardiomyocytes expressing cell cycle markers. Combinatorial overexpression of the enriched genes within this population in neonatal rat cardiomyocytes and mice at postnatal day 12 (P12) unveiled key genes that promoted increased cardiomyocyte proliferation. Therapeutic delivery of these gene cocktails into the myocardial wall after ischaemic injury demonstrated that a combination of thymosin beta 4 (TMSB4) and prothymosin alpha (PTMA) provide a permissive environment for cardiomyocyte proliferation and thereby attenuated cardiac dysfunction. Conclusion This study reveals the transcriptional profile of proliferating cardiomyocytes in the ischaemic heart and shows that overexpression of the two identified factors, TMSB4 and PTMA, can promote cardiac regeneration. This work indicates that in addition to activating cardiomyocyte proliferation, a supportive environment is a key for regeneration to occur

    Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner

    Get PDF
    The disruption in blood supply due to myocardial infarction is a critical determinant for infarct size and subsequent deterioration in function. The identification of factors that enhance cardiac repair by the restoration of the vascular network is, therefore, of great significance. Here, we show that the transcription factor Zinc finger E-box-binding homeobox 2 (ZEB2) is increased in stressed cardiomyocytes and induces a cardioprotective cross-talk between cardiomyocytes and endothelial cells to enhance angiogenesis after ischemia. Single-cell sequencing indicates ZEB2 to be enriched in injured cardiomyocytes. Cardiomyocyte-specific deletion of ZEB2 results in impaired cardiac contractility and infarct healing post-myocardial infarction (post-MI), while cardiomyocyte-specific ZEB2 overexpression improves cardiomyocyte survival and cardiac function. We identified Thymosin β4 (TMSB4) and Prothymosin α (PTMA) as main paracrine factors released from cardiomyocytes to stimulate angiogenesis by enhancing endothelial cell migration, and whose regulation is validated in our in vivo models. Therapeutic delivery of ZEB2 to cardiomyocytes in the infarcted heart induces the expression of TMSB4 and PTMA, which enhances angiogenesis and prevents cardiac dysfunction. These findings reveal ZEB2 as a beneficial factor during ischemic injury, which may hold promise for the identification of new therapies

    Single-Cell RNA Sequencing of the Adult Mammalian Heart—State-of-the-Art and Future Perspectives

    No full text
    Purpose of the Review: Cardiovascular disease remains the leading cause of death worldwide, resulting in cardiac dysfunction and, subsequently, heart failure (HF). Single-cell RNA sequencing (scRNA-seq) is a rapidly developing tool for studying the transcriptional heterogeneity in both healthy and diseased hearts. Wide applications of techniques like scRNA-seq could significantly contribute to uncovering the molecular mechanisms involved in the onset and progression to HF and contribute to the development of new, improved therapies. This review discusses several studies that successfully applied scRNA-seq to the mouse and human heart using various methods of tissue processing and downstream analysis. Recent Findings: The application of scRNA-seq in the cardiovascular field is continuously expanding, providing new detailed insights into cardiac pathophysiology. Summary: Increased understanding of cardiac pathophysiology on the single-cell level will contribute to the development of novel, more effective therapeutic strategies. Here, we summarise the possible application of scRNA-seq to the adult mammalian heart

    Scientists on the Spot: Re-defining atherosclerosis through biobanks

    No full text
    In this Onlife interview, Professor Pasterkamp talks about current challenges in the atherosclerotic field and the best ways to translate basic science into clinical practice

    Scientists on the Spot: Re-awakening the heart's regenerative capacity

    No full text

    Scientists on the Spot:Re-awakening the heart's regenerative capacity

    No full text
    Dr. Monika M Gladka from Amsterdam University Medical Center (The Netherlands), interviews Prof. Mauro Giacca, Professor of Cardiovascular Sciences at the School of Cardiovascular Medicine & Sciences at King's College London, London (UK).Highlight: In this Onlife interview, Professor Giacca, one of the key opinion leaders in the cardiovascular field, talks about challenges and future perspectives in cardiac regeneration research
    corecore