6 research outputs found

    Π˜Π½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ активности каспазы-2 Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π’-ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠΌΡ„ΠΎΠΌΡ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Jurkat ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅Π³ΠΎ сплайсинг ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π° ΠΊ Π΅Ρ‘ ΠΏΡ€Π΅-мРНК

    Get PDF
    Caspase-2 is a key enzyme thinvolved in induction of apoptosis. The caspase-2 level is regulated by alternative splicing (AS) of its mRNA. The aim of this work was to determine the ability of an oligonucleotide complementary to Casp-2 pre-mRNA to induce AS. This oligonucleotide blocked the binding of splicing-regulating proteins to their sites at the end of exon 9 of Casp-2 pre-mRNA, leading to induction of AS of Casp-2 mRNA. The decrease in expression of full-size active splice-variant (Casp-2L) and the increase the expression of a shortened variant (Casp-2S) was demonstrated in human T-cell lymphoma Jurkat cell line. The expression level of total Casp-2 remained unchanged. Disproportion of splice variants of Casp-2 led to inhibition of enzymatic activity of caspase-2.Каспаза-2 являСтся Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠΌ, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ Π² ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π°. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° каспазы-2 рСгулируСтся Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌ сплайсингом (АБ) Π΅Ρ‘ мРНК. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ способности ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°, ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΎΠ³ΠΎ ΠΏΡ€Π΅-мРНК Casp-2, ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ АБ. Π”Π°Π½Π½Ρ‹ΠΉ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ Π±Π»ΠΎΠΊΠΈΡ€ΠΎΠ²Π°Π» связываниС Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… сплайсинг Π±Π΅Π»ΠΊΠΎΠ² со своими сайтами Π½Π° ΠΊΠΎΠ½Ρ†Π΅ экзона 9 ΠΏΡ€Π΅-мРНК Casp-2, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ АБ мРНК Casp-2: пониТСнию экспрСссии ΠΏΠΎΠ»Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ сплайс-Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° Casp-2L ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ экспрСссии ΡƒΠΊΠΎΡ€ΠΎΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π²Π°Ρ€Π°Π½Ρ‚Π° Casp-2S Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π’-ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠΌΡ„ΠΎΠΌΡ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π»ΠΈΠ½ΠΈΠΈ Jurkat. ΠŸΡ€ΠΈ этом ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ экспрСссии ΠΎΠ±Ρ‰Π΅ΠΉ Casp-2 Π½Π΅ измСнялся. ΠΠ°Ρ€ΡƒΡˆΡƒΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΈ сплайс-Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² Casp-2 ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ» ΠΊ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ активности каспазы-2

    Π€ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС свойства ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ L-аспарагиназы ΠΈΠ· Rhodospirillum rubrum, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ

    Get PDF
    Rru_A3730 protein is a bacterial Rhodospirillum rubrum L-asparaginase (RrA), which is known by its anticancer activity. RrA variants with point amino acid substitutions in the region of 150 amino acids residues: RrA17N, K149E, RrAE149R, V150P, F151T, RrА17N, E149R, V150P, RrAE149R, V150P, showed antiproliferative properties, and also by their ability to suppress telomerase activity. This work is devoted to comparison of physical-chemical and catalytic properties of these mutant forms of RrA. It is shown that pH optimum is in the alkaline zone (8.5 – 9.3); L-glutaminase and D-asparaginase activity is respectively not more than 0.1% and 1.6% of L-asparaginase for all studied variants of RrA. The presence of the N17-terminal amino acid sequence MASMTGGQMGRGSSRQ of the capsid protein of bacteriophage T7 in the RrA structure leads to an increase in the thermal stability of mutant RrA analogues (from 50Β°C to 56Β°C) and their resistance to denaturation in the presence of 3 – 4 M urea. It is of Metal ions exhibit multidirectional effects on L-asparaginase activity of RrA. K+, Ca2+, Zn2+, Cs+, Co2+ in significantly affect the activity of L-asparaginase, while Mn2+, Cu2+, Fe3+ ions inhibit it. There was no correlation between antitelomerase (antiproliferative) activity and kinetic properties of mutant forms of L-asparaginase RrA.Π‘Π΅Π»ΠΎΠΊ Rru_A3730, извСстный ΠΊΠ°ΠΊ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ L-аспарагиназа Rhodospirillum rubrum, прСдставляСт интСрСс Π² качСствС ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ срСдства, особСнно Π΅Ρ‘ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ с Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΌΠΈ аминокислотными Π·Π°ΠΌΠ΅Π½Π°ΠΌΠΈ Π² Ρ€Π°ΠΉΠΎΠ½Π΅ 150 аминокислотного остатка (Π°.ΠΊ.ΠΎ.): RrA17N, K149E, RrAE149R, V150P, F151T, RrА17N, E149R, V150P, RrAE149R, V150P, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π°Π½Ρ‚ΠΈΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ свойствами, Π½ΠΎ ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΠ΄Π°Π²Π»ΡΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹. Данная Ρ€Π°Π±ΠΎΡ‚Π° посвящСна ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских ΠΈ каталитичСских свойств этих ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ RrA. Показано, Ρ‡Ρ‚ΠΎ для всСх ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² RrA рН ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌ находится Π² Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΠΉ Π·ΠΎΠ½Π΅ (8.5 – 9.3); L-глутаминазная ΠΈ D-аспарагиназная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚, соотвСтствСнно, Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 0.1% ΠΈ 1.6% ΠΎΡ‚ L-аспарагиназной. ΠŸΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ 17N-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ аминокислотной ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ MASMTGGQQMGRGSSRQ капсидного Π±Π΅Π»ΠΊΠ° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° Π’7 Π² структурС RrA ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² RrA (ΠΎΡ‚ 50Β°Π‘ Π΄ΠΎ 56Β°Π‘) ΠΈ ΠΈΡ… устойчивости ΠΊ Π΄Π΅Π½Π°Ρ‚ΡƒΡ€Π°Ρ†ΠΈΠΈ Π² присутствии 3 – 4 М ΠΌΠΎΡ‡Π΅Π²ΠΈΠ½Ρ‹. ВыявлСн Ρ€Π°Π·Π½ΠΎΠ½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ эффСкт ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π½Π° L-Π°ΡΠΏΠ°Ρ€Π°Π³ΠΈΠ½Π°Π·Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² RrA: ΠΈΠΎΠ½Ρ‹ K+, Ca2+, Zn2+, Cs+, Co2+ сущСствСнно Π½Π΅ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ L-аспарагиназы, Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² Mn2+, Cu2+, Fe3+ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ сниТСнию активности. НС ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ коррСляции ΠΌΠ΅ΠΆΠ΄Ρƒ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ (Π°Π½Ρ‚ΠΈΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ) Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ кинСтичСскими свойствами ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ L-аспарагиназы RrA

    Π˜Π½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ активности каспазы-2 Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π’-ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠΌΡ„ΠΎΠΌΡ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Jurkat ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅Π³ΠΎ сплайсинг ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π° ΠΊ Π΅Ρ‘ ΠΏΡ€Π΅-мРНК

    No full text
    Caspase-2 is a key enzyme thinvolved in induction of apoptosis. The caspase-2 level is regulated by alternative splicing (AS) of its mRNA. The aim of this work was to determine the ability of an oligonucleotide complementary to Casp-2 pre-mRNA to induce AS. This oligonucleotide blocked the binding of splicing-regulating proteins to their sites at the end of exon 9 of Casp-2 pre-mRNA, leading to induction of AS of Casp-2 mRNA. The decrease in expression of full-size active splice-variant (Casp-2L) and the increase the expression of a shortened variant (Casp-2S) was demonstrated in human T-cell lymphoma Jurkat cell line. The expression level of total Casp-2 remained unchanged. Disproportion of splice variants of Casp-2 led to inhibition of enzymatic activity of caspase-2.Каспаза-2 являСтся Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠΌ, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ Π² ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π°. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° каспазы-2 рСгулируСтся Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌ сплайсингом (АБ) Π΅Ρ‘ мРНК. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ способности ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°, ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΎΠ³ΠΎ ΠΏΡ€Π΅-мРНК Casp-2, ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ АБ. Π”Π°Π½Π½Ρ‹ΠΉ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ Π±Π»ΠΎΠΊΠΈΡ€ΠΎΠ²Π°Π» связываниС Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… сплайсинг Π±Π΅Π»ΠΊΠΎΠ² со своими сайтами Π½Π° ΠΊΠΎΠ½Ρ†Π΅ экзона 9 ΠΏΡ€Π΅-мРНК Casp-2, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ АБ мРНК Casp-2: пониТСнию экспрСссии ΠΏΠΎΠ»Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ сплайс-Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° Casp-2L ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ экспрСссии ΡƒΠΊΠΎΡ€ΠΎΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π²Π°Ρ€Π°Π½Ρ‚Π° Casp-2S Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π’-ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠΌΡ„ΠΎΠΌΡ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π»ΠΈΠ½ΠΈΠΈ Jurkat. ΠŸΡ€ΠΈ этом ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ экспрСссии ΠΎΠ±Ρ‰Π΅ΠΉ Casp-2 Π½Π΅ измСнялся. ΠΠ°Ρ€ΡƒΡˆΡƒΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΈ сплайс-Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² Casp-2 ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ» ΠΊ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ активности каспазы-2

    Induction of apoptotic endonuclease endog with DNA-damaging agents initiates alternative splicing of telomerase catalytic subunit hTERT and inhibition of telomerase activity hTERT in human CD4+ and CD8+ T-lymphocytes

    No full text
    Activity of telomerase catalytic subunit hTERT (human Telomerase Reverse Transcriptase) can be regulated by alternative splicing of its mRNA. At present time exact mechanism of hTERT splicing is not fully understood. Apoptotic endonuclease EndoG is known to participate this process. EndoG expression is induced by DNA damages. The aim of this work was to investigate the ability of DNA-damaging agents with different mechanism of action to induce EndoG expression and inhibit telomerase activity due to the activation of hTERT alternative splicing in normal activated human CD4+ and CD8+ T-lymphocytes. All investigated DNA-damaging agents were able to induce EndoG expression. Cisplatin, a therapeutic compound, producing DNA cross-links induced the highest level of DNA damages and EndoG expression. Incubation of CD4+ and CD8+ T-cells with cisplatin caused the changes in proportion of hTERT splice variants and inhibition of telomerase activity

    Induction of apoptotic endonuclease endog with DNA-damaging agents initiates alternative splicing of telomerase catalytic subunit hTERT and inhibition of telomerase activity hTERT in human CD4+ and CD8+ T-lymphocytes

    No full text
    Activity of telomerase catalytic subunit hTERT (human Telomerase Reverse Transcriptase) can be regulated by alternative splicing of its mRNA. At present time exact mechanism of hTERT splicing is not fully understood. Apoptotic endonuclease EndoG is known to participate this process. EndoG expression is induced by DNA damages. The aim of this work was to investigate the ability of DNA-damaging agents with different mechanism of action to induce EndoG expression and inhibit telomerase activity due to the activation of hTERT alternative splicing in normal activated human CD4+ and CD8+ T-lymphocytes. All investigated DNA-damaging agents were able to induce EndoG expression. Cisplatin, a therapeutic compound, producing DNA cross-links induced the highest level of DNA damages and EndoG expression. Incubation of CD4+ and CD8+ T-cells with cisplatin caused the changes in proportion of hTERT splice variants and inhibition of telomerase activity

    Π€ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС свойства ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ L-аспарагиназы ΠΈΠ· Rhodospirillum rubrum, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ

    No full text
    Rru_A3730 protein is a bacterial Rhodospirillum rubrum L-asparaginase (RrA), which is known by its anticancer activity. RrA variants with point amino acid substitutions in the region of 150 amino acids residues: RrA17N, K149E, RrAE149R, V150P, F151T, RrА17N, E149R, V150P, RrAE149R, V150P, showed antiproliferative properties, and also by their ability to suppress telomerase activity. This work is devoted to comparison of physical-chemical and catalytic properties of these mutant forms of RrA. It is shown that pH optimum is in the alkaline zone (8.5 – 9.3); L-glutaminase and D-asparaginase activity is respectively not more than 0.1% and 1.6% of L-asparaginase for all studied variants of RrA. The presence of the N17-terminal amino acid sequence MASMTGGQMGRGSSRQ of the capsid protein of bacteriophage T7 in the RrA structure leads to an increase in the thermal stability of mutant RrA analogues (from 50Β°C to 56Β°C) and their resistance to denaturation in the presence of 3 – 4 M urea. It is of Metal ions exhibit multidirectional effects on L-asparaginase activity of RrA. K+, Ca2+, Zn2+, Cs+, Co2+ in significantly affect the activity of L-asparaginase, while Mn2+, Cu2+, Fe3+ ions inhibit it. There was no correlation between antitelomerase (antiproliferative) activity and kinetic properties of mutant forms of L-asparaginase RrA.Π‘Π΅Π»ΠΎΠΊ Rru_A3730, извСстный ΠΊΠ°ΠΊ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ L-аспарагиназа Rhodospirillum rubrum, прСдставляСт интСрСс Π² качСствС ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ срСдства, особСнно Π΅Ρ‘ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ с Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΌΠΈ аминокислотными Π·Π°ΠΌΠ΅Π½Π°ΠΌΠΈ Π² Ρ€Π°ΠΉΠΎΠ½Π΅ 150 аминокислотного остатка (Π°.ΠΊ.ΠΎ.): RrA17N, K149E, RrAE149R, V150P, F151T, RrА17N, E149R, V150P, RrAE149R, V150P, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π°Π½Ρ‚ΠΈΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ свойствами, Π½ΠΎ ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΠ΄Π°Π²Π»ΡΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹. Данная Ρ€Π°Π±ΠΎΡ‚Π° посвящСна ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских ΠΈ каталитичСских свойств этих ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ RrA. Показано, Ρ‡Ρ‚ΠΎ для всСх ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² RrA рН ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌ находится Π² Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΠΉ Π·ΠΎΠ½Π΅ (8.5 – 9.3); L-глутаминазная ΠΈ D-аспарагиназная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚, соотвСтствСнно, Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 0.1% ΠΈ 1.6% ΠΎΡ‚ L-аспарагиназной. ΠŸΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ 17N-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ аминокислотной ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ MASMTGGQQMGRGSSRQ капсидного Π±Π΅Π»ΠΊΠ° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° Π’7 Π² структурС RrA ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² RrA (ΠΎΡ‚ 50Β°Π‘ Π΄ΠΎ 56Β°Π‘) ΠΈ ΠΈΡ… устойчивости ΠΊ Π΄Π΅Π½Π°Ρ‚ΡƒΡ€Π°Ρ†ΠΈΠΈ Π² присутствии 3 – 4 М ΠΌΠΎΡ‡Π΅Π²ΠΈΠ½Ρ‹. ВыявлСн Ρ€Π°Π·Π½ΠΎΠ½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ эффСкт ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π½Π° L-Π°ΡΠΏΠ°Ρ€Π°Π³ΠΈΠ½Π°Π·Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² RrA: ΠΈΠΎΠ½Ρ‹ K+, Ca2+, Zn2+, Cs+, Co2+ сущСствСнно Π½Π΅ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ L-аспарагиназы, Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² Mn2+, Cu2+, Fe3+ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ сниТСнию активности. НС ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ коррСляции ΠΌΠ΅ΠΆΠ΄Ρƒ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ (Π°Π½Ρ‚ΠΈΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ) Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ кинСтичСскими свойствами ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ L-аспарагиназы RrA
    corecore