6 research outputs found
ΠΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΊΠ°ΡΠΏΠ°Π·Ρ-2 Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ Π’-ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π»ΠΈΠΌΡΠΎΠΌΡ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Jurkat ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ°ΡΡΠ΅Π³ΠΎ ΡΠΏΠ»Π°ΠΉΡΠΈΠ½Π³ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄Π° ΠΊ Π΅Ρ ΠΏΡΠ΅-ΠΌΠ ΠΠ
Caspase-2 is a key enzyme thinvolved in induction of apoptosis. The caspase-2 level is regulated by alternative splicing (AS) of its mRNA. The aim of this work was to determine the ability of an oligonucleotide complementary to Casp-2 pre-mRNA to induce AS. This oligonucleotide blocked the binding of splicing-regulating proteins to their sites at the end of exon 9 of Casp-2 pre-mRNA, leading to induction of AS of Casp-2 mRNA. The decrease in expression of full-size active splice-variant (Casp-2L) and the increase the expression of a shortened variant (Casp-2S) was demonstrated in human T-cell lymphoma Jurkat cell line. The expression level of total Casp-2 remained unchanged. Disproportion of splice variants of Casp-2 led to inhibition of enzymatic activity of caspase-2.ΠΠ°ΡΠΏΠ°Π·Π°-2 ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠΌ, ΡΡΠ°ΡΡΠ²ΡΡΡΠΈΠΌ Π² ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ Π°ΠΏΠΎΠΏΡΠΎΠ·Π°. ΠΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ° ΠΊΠ°ΡΠΏΠ°Π·Ρ-2 ΡΠ΅Π³ΡΠ»ΠΈΡΡΠ΅ΡΡΡ Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΡΠΌ ΡΠΏΠ»Π°ΠΉΡΠΈΠ½Π³ΠΎΠΌ (ΠΠ‘) Π΅Ρ ΠΌΠ ΠΠ. Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ Π±ΡΠ»ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄Π°, ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅-ΠΌΠ ΠΠ Casp-2, ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°ΡΡ ΠΠ‘. ΠΠ°Π½Π½ΡΠΉ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄ Π±Π»ΠΎΠΊΠΈΡΠΎΠ²Π°Π» ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Π³ΡΠ»ΠΈΡΡΡΡΠΈΡ
ΡΠΏΠ»Π°ΠΉΡΠΈΠ½Π³ Π±Π΅Π»ΠΊΠΎΠ² ΡΠΎ ΡΠ²ΠΎΠΈΠΌΠΈ ΡΠ°ΠΉΡΠ°ΠΌΠΈ Π½Π° ΠΊΠΎΠ½ΡΠ΅ ΡΠΊΠ·ΠΎΠ½Π° 9 ΠΏΡΠ΅-ΠΌΠ ΠΠ Casp-2, ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΠΠ‘ ΠΌΠ ΠΠ Casp-2: ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΏΠΎΠ»Π½ΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΏΠ»Π°ΠΉΡ-Π²Π°ΡΠΈΠ°Π½ΡΠ° Casp-2L ΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π²Π°ΡΠ°Π½ΡΠ° Casp-2S Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Π’-ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π»ΠΈΠΌΡΠΎΠΌΡ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Π»ΠΈΠ½ΠΈΠΈ Jurkat. ΠΡΠΈ ΡΡΠΎΠΌ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΎΠ±ΡΠ΅ΠΉ Casp-2 Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ»ΡΡ. ΠΠ°ΡΡΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΈ ΡΠΏΠ»Π°ΠΉΡ-Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² Casp-2 ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ» ΠΊ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠ²Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΊΠ°ΡΠΏΠ°Π·Ρ-2
Π€ΠΈΠ·ΠΈΠΊΠΎ-Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΌΡΡΠ°Π½ΡΠ½ΡΡ ΡΠΎΡΠΌ L-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Ρ ΠΈΠ· Rhodospirillum rubrum, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΡ Π°Π½ΡΠΈΡΠ΅Π»ΠΎΠΌΠ΅ΡΠ°Π·Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ
Rru_A3730 protein is a bacterial Rhodospirillum rubrum L-asparaginase (RrA), which is known by its anticancer activity. RrA variants with point amino acid substitutions in the region of 150 amino acids residues: RrA17N, K149E, RrAE149R, V150P, F151T, RrΠ17N, E149R, V150P, RrAE149R, V150P, showed antiproliferative properties, and also by their ability to suppress telomerase activity. This work is devoted to comparison of physical-chemical and catalytic properties of these mutant forms of RrA. It is shown that pH optimum is in the alkaline zone (8.5 β 9.3); L-glutaminase and D-asparaginase activity is respectively not more than 0.1% and 1.6% of L-asparaginase for all studied variants of RrA. The presence of the N17-terminal amino acid sequence MASMTGGQMGRGSSRQ of the capsid protein of bacteriophage T7 in the RrA structure leads to an increase in the thermal stability of mutant RrA analogues (from 50Β°C to 56Β°C) and their resistance to denaturation in the presence of 3 β 4 M urea. It is of Metal ions exhibit multidirectional effects on L-asparaginase activity of RrA. K+, Ca2+, Zn2+, Cs+, Co2+ in significantly affect the activity of L-asparaginase, while Mn2+, Cu2+, Fe3+ ions inhibit it. There was no correlation between antitelomerase (antiproliferative) activity and kinetic properties of mutant forms of L-asparaginase RrA.ΠΠ΅Π»ΠΎΠΊ Rru_A3730, ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΉ ΠΊΠ°ΠΊ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ L-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Π° Rhodospirillum rubrum, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ ΡΡΠ΅Π΄ΡΡΠ²Π°, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ Π΅Ρ Π²Π°ΡΠΈΠ°Π½ΡΡ Ρ ΡΠΎΡΠ΅ΡΠ½ΡΠΌΠΈ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΡΠΌΠΈ Π·Π°ΠΌΠ΅Π½Π°ΠΌΠΈ Π² ΡΠ°ΠΉΠΎΠ½Π΅ 150 Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΎΡΡΠ°ΡΠΊΠ° (Π°.ΠΊ.ΠΎ.): RrA17N, K149E, RrAE149R, V150P, F151T, RrΠ17N, E149R, V150P, RrAE149R, V150P, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠ΅ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π°Π½ΡΠΈΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ, Π½ΠΎ ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡΡ ΠΏΠΎΠ΄Π°Π²Π»ΡΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ΅Π»ΠΎΠΌΠ΅ΡΠ°Π·Ρ. ΠΠ°Π½Π½Π°Ρ ΡΠ°Π±ΠΎΡΠ° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΡΠΈΡ
ΠΌΡΡΠ°Π½ΡΠ½ΡΡ
ΡΠΎΡΠΌ RrA. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄Π»Ρ Π²ΡΠ΅Ρ
ΠΈΠ·ΡΡΠ΅Π½Π½ΡΡ
Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² RrA ΡΠ ΠΎΠΏΡΠΈΠΌΡΠΌ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π² ΡΠ΅Π»ΠΎΡΠ½ΠΎΠΉ Π·ΠΎΠ½Π΅ (8.5 β 9.3); L-Π³Π»ΡΡΠ°ΠΌΠΈΠ½Π°Π·Π½Π°Ρ ΠΈ D-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Π½Π°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΡΡ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 0.1% ΠΈ 1.6% ΠΎΡ L-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Π½ΠΎΠΉ. ΠΡΠΈΡΡΡΡΡΠ²ΠΈΠ΅ 17N-ΠΊΠΎΠ½ΡΠ΅Π²ΠΎΠΉ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ MASMTGGQQMGRGSSRQ ΠΊΠ°ΠΏΡΠΈΠ΄Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π° Π’7 Π² ΡΡΡΡΠΊΡΡΡΠ΅ RrA ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠΌΠΎΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΌΡΡΠ°Π½ΡΠ½ΡΡ
Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² RrA (ΠΎΡ 50Β°Π‘ Π΄ΠΎ 56Β°Π‘) ΠΈ ΠΈΡ
ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΠΊ Π΄Π΅Π½Π°ΡΡΡΠ°ΡΠΈΠΈ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ 3 β 4 Π ΠΌΠΎΡΠ΅Π²ΠΈΠ½Ρ. ΠΡΡΠ²Π»Π΅Π½ ΡΠ°Π·Π½ΠΎΠ½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π½Π° L-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Π½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² RrA: ΠΈΠΎΠ½Ρ K+, Ca2+, Zn2+, Cs+, Co2+ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½Π΅ Π²Π»ΠΈΡΡΡ Π½Π° Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ L-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Ρ, Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² Mn2+, Cu2+, Fe3+ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ. ΠΠ΅ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π°Π½ΡΠΈΡΠ΅Π»ΠΎΠΌΠ΅ΡΠ°Π·Π½ΠΎΠΉ (Π°Π½ΡΠΈΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠΉ) Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ ΠΈ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ ΠΌΡΡΠ°Π½ΡΠ½ΡΡ
ΡΠΎΡΠΌ L-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Ρ RrA
ΠΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΊΠ°ΡΠΏΠ°Π·Ρ-2 Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ Π’-ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π»ΠΈΠΌΡΠΎΠΌΡ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Jurkat ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ°ΡΡΠ΅Π³ΠΎ ΡΠΏΠ»Π°ΠΉΡΠΈΠ½Π³ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄Π° ΠΊ Π΅Ρ ΠΏΡΠ΅-ΠΌΠ ΠΠ
Caspase-2 is a key enzyme thinvolved in induction of apoptosis. The caspase-2 level is regulated by alternative splicing (AS) of its mRNA. The aim of this work was to determine the ability of an oligonucleotide complementary to Casp-2 pre-mRNA to induce AS. This oligonucleotide blocked the binding of splicing-regulating proteins to their sites at the end of exon 9 of Casp-2 pre-mRNA, leading to induction of AS of Casp-2 mRNA. The decrease in expression of full-size active splice-variant (Casp-2L) and the increase the expression of a shortened variant (Casp-2S) was demonstrated in human T-cell lymphoma Jurkat cell line. The expression level of total Casp-2 remained unchanged. Disproportion of splice variants of Casp-2 led to inhibition of enzymatic activity of caspase-2.ΠΠ°ΡΠΏΠ°Π·Π°-2 ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠΌ, ΡΡΠ°ΡΡΠ²ΡΡΡΠΈΠΌ Π² ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ Π°ΠΏΠΎΠΏΡΠΎΠ·Π°. ΠΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ° ΠΊΠ°ΡΠΏΠ°Π·Ρ-2 ΡΠ΅Π³ΡΠ»ΠΈΡΡΠ΅ΡΡΡ Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΡΠΌ ΡΠΏΠ»Π°ΠΉΡΠΈΠ½Π³ΠΎΠΌ (ΠΠ‘) Π΅Ρ ΠΌΠ ΠΠ. Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ Π±ΡΠ»ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄Π°, ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅-ΠΌΠ ΠΠ Casp-2, ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°ΡΡ ΠΠ‘. ΠΠ°Π½Π½ΡΠΉ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄ Π±Π»ΠΎΠΊΠΈΡΠΎΠ²Π°Π» ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Π³ΡΠ»ΠΈΡΡΡΡΠΈΡ
ΡΠΏΠ»Π°ΠΉΡΠΈΠ½Π³ Π±Π΅Π»ΠΊΠΎΠ² ΡΠΎ ΡΠ²ΠΎΠΈΠΌΠΈ ΡΠ°ΠΉΡΠ°ΠΌΠΈ Π½Π° ΠΊΠΎΠ½ΡΠ΅ ΡΠΊΠ·ΠΎΠ½Π° 9 ΠΏΡΠ΅-ΠΌΠ ΠΠ Casp-2, ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΠΠ‘ ΠΌΠ ΠΠ Casp-2: ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΏΠΎΠ»Π½ΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΏΠ»Π°ΠΉΡ-Π²Π°ΡΠΈΠ°Π½ΡΠ° Casp-2L ΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π²Π°ΡΠ°Π½ΡΠ° Casp-2S Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Π’-ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π»ΠΈΠΌΡΠΎΠΌΡ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Π»ΠΈΠ½ΠΈΠΈ Jurkat. ΠΡΠΈ ΡΡΠΎΠΌ ΡΡΠΎΠ²Π΅Π½Ρ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΎΠ±ΡΠ΅ΠΉ Casp-2 Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ»ΡΡ. ΠΠ°ΡΡΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΈ ΡΠΏΠ»Π°ΠΉΡ-Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² Casp-2 ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ» ΠΊ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠ²Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΊΠ°ΡΠΏΠ°Π·Ρ-2
Induction of apoptotic endonuclease endog with DNA-damaging agents initiates alternative splicing of telomerase catalytic subunit hTERT and inhibition of telomerase activity hTERT in human CD4+ and CD8+ T-lymphocytes
Activity of telomerase catalytic subunit hTERT (human Telomerase Reverse Transcriptase) can be regulated by alternative splicing of its mRNA. At present time exact mechanism of hTERT splicing is not fully understood. Apoptotic endonuclease EndoG is known to participate this process. EndoG expression is induced by DNA damages. The aim of this work was to investigate the ability of DNA-damaging agents with different mechanism of action to induce EndoG expression and inhibit telomerase activity due to the activation of hTERT alternative splicing in normal activated human CD4+ and CD8+ T-lymphocytes. All investigated DNA-damaging agents were able to induce EndoG expression. Cisplatin, a therapeutic compound, producing DNA cross-links induced the highest level of DNA damages and EndoG expression. Incubation of CD4+ and CD8+ T-cells with cisplatin caused the changes in proportion of hTERT splice variants and inhibition of telomerase activity
Induction of apoptotic endonuclease endog with DNA-damaging agents initiates alternative splicing of telomerase catalytic subunit hTERT and inhibition of telomerase activity hTERT in human CD4+ and CD8+ T-lymphocytes
Activity of telomerase catalytic subunit hTERT (human Telomerase Reverse Transcriptase) can be regulated by alternative splicing of its mRNA. At present time exact mechanism of hTERT splicing is not fully understood. Apoptotic endonuclease EndoG is known to participate this process. EndoG expression is induced by DNA damages. The aim of this work was to investigate the ability of DNA-damaging agents with different mechanism of action to induce EndoG expression and inhibit telomerase activity due to the activation of hTERT alternative splicing in normal activated human CD4+ and CD8+ T-lymphocytes. All investigated DNA-damaging agents were able to induce EndoG expression. Cisplatin, a therapeutic compound, producing DNA cross-links induced the highest level of DNA damages and EndoG expression. Incubation of CD4+ and CD8+ T-cells with cisplatin caused the changes in proportion of hTERT splice variants and inhibition of telomerase activity
Π€ΠΈΠ·ΠΈΠΊΠΎ-Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΌΡΡΠ°Π½ΡΠ½ΡΡ ΡΠΎΡΠΌ L-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Ρ ΠΈΠ· Rhodospirillum rubrum, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΡ Π°Π½ΡΠΈΡΠ΅Π»ΠΎΠΌΠ΅ΡΠ°Π·Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ
Rru_A3730 protein is a bacterial Rhodospirillum rubrum L-asparaginase (RrA), which is known by its anticancer activity. RrA variants with point amino acid substitutions in the region of 150 amino acids residues: RrA17N, K149E, RrAE149R, V150P, F151T, RrΠ17N, E149R, V150P, RrAE149R, V150P, showed antiproliferative properties, and also by their ability to suppress telomerase activity. This work is devoted to comparison of physical-chemical and catalytic properties of these mutant forms of RrA. It is shown that pH optimum is in the alkaline zone (8.5 β 9.3); L-glutaminase and D-asparaginase activity is respectively not more than 0.1% and 1.6% of L-asparaginase for all studied variants of RrA. The presence of the N17-terminal amino acid sequence MASMTGGQMGRGSSRQ of the capsid protein of bacteriophage T7 in the RrA structure leads to an increase in the thermal stability of mutant RrA analogues (from 50Β°C to 56Β°C) and their resistance to denaturation in the presence of 3 β 4 M urea. It is of Metal ions exhibit multidirectional effects on L-asparaginase activity of RrA. K+, Ca2+, Zn2+, Cs+, Co2+ in significantly affect the activity of L-asparaginase, while Mn2+, Cu2+, Fe3+ ions inhibit it. There was no correlation between antitelomerase (antiproliferative) activity and kinetic properties of mutant forms of L-asparaginase RrA.ΠΠ΅Π»ΠΎΠΊ Rru_A3730, ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΉ ΠΊΠ°ΠΊ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ L-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Π° Rhodospirillum rubrum, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ ΡΡΠ΅Π΄ΡΡΠ²Π°, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ Π΅Ρ Π²Π°ΡΠΈΠ°Π½ΡΡ Ρ ΡΠΎΡΠ΅ΡΠ½ΡΠΌΠΈ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΡΠΌΠΈ Π·Π°ΠΌΠ΅Π½Π°ΠΌΠΈ Π² ΡΠ°ΠΉΠΎΠ½Π΅ 150 Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΎΡΡΠ°ΡΠΊΠ° (Π°.ΠΊ.ΠΎ.): RrA17N, K149E, RrAE149R, V150P, F151T, RrΠ17N, E149R, V150P, RrAE149R, V150P, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠ΅ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π°Π½ΡΠΈΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ, Π½ΠΎ ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡΡ ΠΏΠΎΠ΄Π°Π²Π»ΡΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ΅Π»ΠΎΠΌΠ΅ΡΠ°Π·Ρ. ΠΠ°Π½Π½Π°Ρ ΡΠ°Π±ΠΎΡΠ° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΡΠΈΡ
ΠΌΡΡΠ°Π½ΡΠ½ΡΡ
ΡΠΎΡΠΌ RrA. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄Π»Ρ Π²ΡΠ΅Ρ
ΠΈΠ·ΡΡΠ΅Π½Π½ΡΡ
Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² RrA ΡΠ ΠΎΠΏΡΠΈΠΌΡΠΌ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π² ΡΠ΅Π»ΠΎΡΠ½ΠΎΠΉ Π·ΠΎΠ½Π΅ (8.5 β 9.3); L-Π³Π»ΡΡΠ°ΠΌΠΈΠ½Π°Π·Π½Π°Ρ ΠΈ D-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Π½Π°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΡΡ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 0.1% ΠΈ 1.6% ΠΎΡ L-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Π½ΠΎΠΉ. ΠΡΠΈΡΡΡΡΡΠ²ΠΈΠ΅ 17N-ΠΊΠΎΠ½ΡΠ΅Π²ΠΎΠΉ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ MASMTGGQQMGRGSSRQ ΠΊΠ°ΠΏΡΠΈΠ΄Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π° Π’7 Π² ΡΡΡΡΠΊΡΡΡΠ΅ RrA ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠΌΠΎΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΌΡΡΠ°Π½ΡΠ½ΡΡ
Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² RrA (ΠΎΡ 50Β°Π‘ Π΄ΠΎ 56Β°Π‘) ΠΈ ΠΈΡ
ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΠΊ Π΄Π΅Π½Π°ΡΡΡΠ°ΡΠΈΠΈ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ 3 β 4 Π ΠΌΠΎΡΠ΅Π²ΠΈΠ½Ρ. ΠΡΡΠ²Π»Π΅Π½ ΡΠ°Π·Π½ΠΎΠ½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π½Π° L-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Π½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² RrA: ΠΈΠΎΠ½Ρ K+, Ca2+, Zn2+, Cs+, Co2+ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π½Π΅ Π²Π»ΠΈΡΡΡ Π½Π° Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ L-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Ρ, Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² Mn2+, Cu2+, Fe3+ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ. ΠΠ΅ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π°Π½ΡΠΈΡΠ΅Π»ΠΎΠΌΠ΅ΡΠ°Π·Π½ΠΎΠΉ (Π°Π½ΡΠΈΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠΉ) Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ ΠΈ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ ΠΌΡΡΠ°Π½ΡΠ½ΡΡ
ΡΠΎΡΠΌ L-Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½Π°Π·Ρ RrA