16 research outputs found

    Molecular differentiation of commercial varieties and feral populations of oilseed rape (Brassica napus L.)

    Get PDF
    Background For assessing the risk of escape of transgenes from cultivation, the persistence of feral populations of crop plants is an important aspect. Feral populations of oilseed rape, Brassica napus, are well known, but only scarce information is available on their population dynamics, particularly in Central Europe. To investigate genetic diversity, origin and persistence of feral oilseed rape in Austria, we compared variation at nine polymorphic microsatellite loci in eight feral populations with 19 commercial varieties. Results Overall, commercial varieties and feral populations showed a similar pattern of genetic variation and a similar level of observed heterozygosity. The two groups, however, shared less than 50% of the alleles and no multilocus genotype. A significant among-group (commercial varieties versus feral populations) component of genetic variation was observed (AMOVA: FCT = 0.132). Pairwise comparisons between varieties and feral populations showed moderate to very high genetic differentiation (FST = 0.209 - 0.900). The software STRUCTURE also demonstrated a clear separation between commercial varieties and feral samples: out of 17 identified genetic clusters, only one comprised plants from both a commercial variety and feral sites. Conclusions The results suggest that feral oilseed rape is able to maintain persistent populations. The feral populations may have derived from older cultivars that were not included in our analyses or perhaps have already hybridised with related crops or wild relatives. Feral populations therefore have to be considered in ecological risk assessment and future coexistence measures as a potential hybridisation partner of transgenic oilseed rape

    Kırk bin frank cihaz

    Get PDF
    Émile Richebourg'ün Saadet'te yayımlanan Kırk Bin Frank Cihaz adlı romanının ilk ve son tefrikalarıTefrikanın devamına rastlanmamış, tefrika yarım kalmıştır

    In planta deglycosylation improves the SARS-CoV-2 neutralization activity of recombinant ACE2-Fc

    Get PDF
    SARS-CoV-2 infects human cells via binding of the viral spike glycoprotein to its main cellular receptor, angiotensin-converting enzyme 2 (ACE2). The spike protein-ACE2 receptor interaction is therefore a major target for the development of therapeutic or prophylactic drugs to combat coronavirus infections. Various engineered soluble ACE2 variants (decoys) have been designed and shown to exhibit virus neutralization capacity in cell-based assays and in vivo models. Human ACE2 is heavily glycosylated and some of its glycans impair binding to the SARS-CoV-2 spike protein. Therefore, glycan-engineered recombinant soluble ACE2 variants might display enhanced virus-neutralization potencies. Here, we transiently co-expressed the extracellular domain of ACE2 fused to human Fc (ACE2-Fc) with a bacterial endoglycosidase in Nicotiana benthamiana to produce ACE2-Fc decorated with N-glycans consisting of single GlcNAc residues. The endoglycosidase was targeted to the Golgi apparatus with the intention to avoid any interference of glycan removal with concomitant ACE2-Fc protein folding and quality control in the endoplasmic reticulum. The in vivo deglycosylated ACE2-Fc carrying single GlcNAc residues displayed increased affinity to the receptor-binding domain (RBD) of SARS-CoV-2 as well as improved virus neutralization activity and thus is a promising drug candidate to block coronavirus infection

    Construction of a Functional CMP-Sialic Acid Biosynthesis Pathway in Arabidopsis1[OA]

    No full text
    Previous studies have reported that plants contain negligible amounts of free or protein-bound N-acetylneuraminic acid (Neu5Ac). This is a major disadvantage for the use of plants as a biopharmaceutical expression system, since N-glycans with terminal Neu5Ac residues are important for the biological activities and half-lives of recombinant therapeutic glycoproteins in humans. For the synthesis of Neu5Ac-containing N-glycans, plants have to acquire the ability to synthesize Neu5Ac and its nucleotide-activated derivative, cytidine monophospho-N-acetylneuraminic acid. In this study, we have generated transgenic Arabidopsis (Arabidopsis thaliana) plants expressing three key enzymes of the mammalian Neu5Ac biosynthesis pathway: UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, N-acetylneuraminic acid phosphate synthase, and CMP-N-acetylneuraminic acid synthetase. Simultaneous expression of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase and N-acetylneuraminic acid phosphate synthase resulted in the generation of significant Neu5Ac amounts (1,275 nmol g−1 fresh weight in leaves) in planta, which could be further converted to cytidine monophospho-N-acetylneuraminic acid (2.4 nmol g−1 fresh weight in leaves) by coexpression of CMP-N-acetylneuraminic acid synthetase. These findings are a major step toward the production of Neu5Ac-containing glycoproteins in plants
    corecore