14 research outputs found
Hydroxychloroquine and short-course radiotherapy in elderly patients with newly diagnosed high-grade glioma: a randomized phase II trial
Background:
Effective treatment for patients at least 70 years with newly diagnosed glioblastoma remains challenging and alternatives to conventional cytotoxics are appealing. Autophagy inhibition has shown promising efficacy and safety in small studies of glioblastoma and other cancers.
Methods:
We conducted a randomized phase II trial to compare radiotherapy with or without hydroxychloroquine (2:1 allocation). Patients aged at least 70 years with newly diagnosed high-grade glioma deemed suitable for short-course radiotherapy with an ECOG performance status of 0â1 were included. Radiotherapy treatment consisted of 30 Gy, delivered as 6 fractions given over 2 weeks (5 Gy per fraction). Hydroxychloroquine was given as 200 mg orally b.d. from 7 days prior to radiotherapy until disease progression. The primary endpoint was 1-year overall survival (OS). Secondary endpoints included progression-free survival (PFS), quality of life, and toxicity.
Results:
Fifty-four patients with a median age of 75 were randomized between May 2013 and October 2016. The trial was stopped early in 2016. One-year OS was 20.3% (95% confidence interval [CI] 8.2â36.0) hydroxychloroquine group, and 41.2% (95% CI 18.6â62.6) radiotherapy alone, with a median survival of 7.9 and 11.5 months, respectively. The corresponding 6-month PFS was 35.3% (95% CI 19.3â51.7) and 29.4% (95% CI 10.7â51.1). The outcome in the control arm was better than expected and the excess of deaths in the hydroxychloroquine group appeared unrelated to cancer. There were more grade 3â5 events in the hydroxychloroquine group (60.0%) versus radiotherapy alone (38.9%) without any clear common causation.
Conclusions:
Hydroxychloroquine with short-course radiotherapy did not improve survival compared to radiotherapy alone in elderly patients with glioblastoma
CONCERTO: Simulating the CO, [CII], and [CI] line emission of galaxies in a 117 deg2 field and the impact of field-to-field variance
In the submillimeter regime, spectral line scans and line intensity mapping (LIM) are new promising probes for the cold gas content and star formation rate of galaxies across cosmic time. However, both of these two measurements suffer from field-to-field variance. We study the effect of field-to-field variance on the predicted CO and [CII] power spectra from future LIM experiments such as CONCERTO, as well as on the line luminosity functions (LFs) and the cosmic molecular gas mass density that are currently derived from spectral line scans. We combined a 117 deg2 dark matter lightcone from the Uchuu cosmological simulation with the simulated infrared dusty extragalactic sky (SIDES) approach. The clustering of the dusty galaxies in the SIDES-Uchuu product is validated by reproducing the cosmic infrared background anisotropies measured by Herschel and Planck. We find that in order to constrain the CO LF with an uncertainty below 20%, we need survey sizes of at least 0.1 deg2. Furthermore, accounting for the field-to-field variance using only the Poisson variance can underestimate the total variance by up to 80%. The lower the luminosity is and the larger the survey size is, the higher the level of underestimate. At z < 3, the impact of field-to-field variance on the cosmic molecular gas density can be as high as 40% for the 4.6 arcmin2 field, but drops below 10% for areas larger than 0.2 deg2. However, at z > 3 the variance decreases more slowly with survey size and for example drops below 10% for 1 deg2 fields. Finally, we find that the CO and [CII] LIM power spectra can vary by up to 50% in 1 deg2 fields. This limits the accuracy of the constraints provided by the first 1 deg2 surveys. In addition the level of the shot noise power is always dominated by the sources that are just below the detection thresholds, which limits its potential for deriving number densities of faint [CII] emitters. We provide an analytical formula to estimate the field-to-field variance of current or future LIM experiments given their observed frequency and survey size. The underlying code to derive the field-to-field variance and the full SIDES-Uchuu products (catalogs, cubes, and maps) are publicly available
Understanding of Young Adolescents About HPV Infection: How Health Education Can Improve Vaccination Rate
The purpose of this systematic review was to identify adolescentsâ awareness on the human papillomavirus (HPV), the HPV vaccine, and the willingness to undergo the vaccination. A systematic review of studies concerning the adolescentâs knowledge and education on the admission of the HPV vaccine was carried out, through the Medline/PubMed and the Google Scholar databases, covering information on adolescent attitudes towards HPV vaccination, as well as their perceptions regarding the vaccination and the need for more training, towards the public information about the HPV and the HPV vaccine. This study concludes that adolescents are poorly informed about the HPV and the preventive vaccination issues, underestimating the likelihood of the infection by the virus. The way to improve their knowledge about the HPV and the implications of the HPV infection is to provide information through the framework of compulsory schooling, primary health care, and the development of informative interactive interventions. The awareness for the need of training about the HPV and its implications should be broadened to address the major barrier to vaccination, which is regarded to be the lack of adequate information. The knowledge and the perceptible susceptibility to the HPV infection and HPV-related diseases among adolescents demonstrate the need for a well-designed training program to bridge the gap of information about the HPV virus and to accept the HPV vaccine. © 2020, American Association for Cancer Education
Assessment of Postvaccination Neutralizing Antibodies Response against SARS-CoV-2 in Cancer Patients under Treatment with Targeted Agents
The administration of a third dose of a vaccine against SARS-CoV-2 has increased protection against disease transmission and severity. However, the kinetics of neutralizing antibodies against the virus has been poorly studied in cancer patients under targeted therapies. Baseline characteristics and levels of neutralizing antibodies at specific timepoints after vaccination were compared between patients suffering from breast, ovarian or prostate cancer and healthy individuals. Breast cancer patients were treated with cyclin D kinase 4/6 inhibitors and hormonal therapy, ovarian cancer patients were treated with poly (ADP-ribose) polymerase inhibitors and prostate cancer patients were treated with an androgen receptor targeted agent. Levels of neutralizing antibodies were significantly lower in cancer patients compared to healthy individuals at all timepoints. Antibodiesâ titers declined over time in both groups but remained above protective levels (>50%) at 6 months after the administration of the second dose. The administration of a third dose increased neutralizing antibodiesâ levels in both groups. The titers of protective against SARS-CoV-2 antibodies wane over time and increase after a third dose in cancer patients under treatment
NIKA2 Cosmological Legacy Survey: Survey Description and Galaxy Number Counts
International audienceAims. Deep millimeter surveys are necessary to probe the dust-obscured galaxies at high redshift. We conducted a large observing program at 1.2 and 2 mm with the NIKA2 camera installed on the IRAM 30-meter telescope. This NIKA2 Cosmological Legacy Survey (N2CLS) covers two emblematic fields: GOODS-N and COSMOS. We introduce the N2CLS survey and present new 1.2 and 2 mm number count measurements based on the tiered N2CLS observations from October 2017 to May 2021. Methods. We develop an end-to-end simulation that combines an input sky model with the instrument noise and data reduction pipeline artifacts. This simulation is used to compute the sample purity, flux boosting, pipeline transfer function, completeness, and effective area of the survey. We used the 117 deg SIDES simulations as the sky model, which include the galaxy clustering. Our formalism allows us to correct the source number counts to obtain galaxy number counts, the difference between the two being due to resolution effects caused by the blending of several galaxies inside the large beam of single-dish instruments. Results. The N2CLS-May2021 survey reaches an average 1- noise level of 0.17 and 0.048 mJy on GOODS-N over 159 arcmin, and 0.46 and 0.14 mJy on COSMOS over 1010 arcmin, at 1.2 and 2 mm, respectively. For a purity threshold of 80%, we detect 120 and 67 sources in GOODS-N and 195 and 76 sources in COSMOS, at 1.2 and 2 mm, respectively. Our measurement connects the bright single-dish to the deep interferometric number counts. After correcting for resolution effects, our results reconcile the single-dish and interferometric number counts and are further accurately compared with model predictions
NIKA2 Cosmological Legacy Survey: Survey Description and Galaxy Number Counts
International audienceAims. Deep millimeter surveys are necessary to probe the dust-obscured galaxies at high redshift. We conducted a large observing program at 1.2 and 2 mm with the NIKA2 camera installed on the IRAM 30-meter telescope. This NIKA2 Cosmological Legacy Survey (N2CLS) covers two emblematic fields: GOODS-N and COSMOS. We introduce the N2CLS survey and present new 1.2 and 2 mm number count measurements based on the tiered N2CLS observations from October 2017 to May 2021. Methods. We develop an end-to-end simulation that combines an input sky model with the instrument noise and data reduction pipeline artifacts. This simulation is used to compute the sample purity, flux boosting, pipeline transfer function, completeness, and effective area of the survey. We used the 117 deg SIDES simulations as the sky model, which include the galaxy clustering. Our formalism allows us to correct the source number counts to obtain galaxy number counts, the difference between the two being due to resolution effects caused by the blending of several galaxies inside the large beam of single-dish instruments. Results. The N2CLS-May2021 survey reaches an average 1- noise level of 0.17 and 0.048 mJy on GOODS-N over 159 arcmin, and 0.46 and 0.14 mJy on COSMOS over 1010 arcmin, at 1.2 and 2 mm, respectively. For a purity threshold of 80%, we detect 120 and 67 sources in GOODS-N and 195 and 76 sources in COSMOS, at 1.2 and 2 mm, respectively. Our measurement connects the bright single-dish to the deep interferometric number counts. After correcting for resolution effects, our results reconcile the single-dish and interferometric number counts and are further accurately compared with model predictions
NIKA2 Cosmological Legacy Survey: Survey description and galaxy number counts
Context. Finding and characterizing the heavily obscured galaxies with extreme star formation up to very high redshift is key for constraining the formation of the most massive galaxies in the early Universe. It has been shown that these obscured galaxies are major contributors to the accumulation of stellar mass to z ~ 4. At higher redshift, and despite recent progress, the contribution of dust-obscured galaxies remains poorly known. Aims. Deep surveys in the millimeter domain are necessary in order to probe the dust-obscured galaxies at high redshift. We conducted a large observing program at 1.2 and 2 mm with the NIKA2 camera installed on the IRAM 30m telescope. This NIKA2 Cosmological Legacy Survey (N2CLS) covers two emblematic fields: GOODS-N and COSMOS. We introduce the N2CLS survey and present new 1.2 and 2 mm number counts measurements based on the tiered N2CLS observations (from October 2017 to May 2021) covering 1169 arcmin2. Methods. After a careful data reduction and source extraction, we develop an end-to-end simulation that combines an input sky model with the instrument noise and data reduction pipeline artifacts. This simulation is used to compute the sample purity, flux boosting, pipeline transfer function, completeness, and effective area of the survey (taking into account the non-homogeneous sky coverage). For the input sky model, we used the 117 square degree SIDES simulations, which include galaxy clustering. Our formalism allows us to correct the source number counts to obtain galaxy number counts, the difference between the two being due to resolution effects caused by the blending of several galaxies inside the large beam of single-dish instruments. Results. The N2CLS-May2021 survey is already the deepest and largest ever made at 1.2 and 2 mm. It reaches an average 1Îł - noise level of 0.17 and 0.048 mJy on GOODS-N over 159 arcmin2, and 0.46 and 0.14 mJy on COSMOS over 1010 arcmin2, at 1.2 and 2 mm, respectively. For a purity threshold of 80%, we detect 120 and 67 sources in GOODS-N and 195 and 76 sources in COSMOS at 1.2 and 2 mm, respectively. At 1.2 mm, the number counts measurement probes consistently 1.5 orders of magnitude in flux density, covering the full flux density range from previous single-dish surveys and going a factor of 2 deeper into the sub-mJy regime. Our measurement connects the bright single-dish to the deep interferometric number counts. At 2 mm, our measurement matches the depth of the deepest interferometric number counts and extends a factor of 2 above the brightest constraints. After correcting for resolution effects, our results reconcile the single-dish and interferometric number counts, which can be further accurately compared with model predictions. Conclusions. While the observation in GOODS-N have already reached the target depth, we expect the final N2CLS survey to be 1.5 times deeper for COSMOS. Thanks to its volume-complete flux selection, the final N2CLS sample will be an ideal reference for conducting a full characterization of dust-obscured galaxies at high redshift
NIKA2 Cosmological Legacy Survey: Survey Description and Galaxy Number Counts
International audienceAims. Deep millimeter surveys are necessary to probe the dust-obscured galaxies at high redshift. We conducted a large observing program at 1.2 and 2 mm with the NIKA2 camera installed on the IRAM 30-meter telescope. This NIKA2 Cosmological Legacy Survey (N2CLS) covers two emblematic fields: GOODS-N and COSMOS. We introduce the N2CLS survey and present new 1.2 and 2 mm number count measurements based on the tiered N2CLS observations from October 2017 to May 2021. Methods. We develop an end-to-end simulation that combines an input sky model with the instrument noise and data reduction pipeline artifacts. This simulation is used to compute the sample purity, flux boosting, pipeline transfer function, completeness, and effective area of the survey. We used the 117 deg SIDES simulations as the sky model, which include the galaxy clustering. Our formalism allows us to correct the source number counts to obtain galaxy number counts, the difference between the two being due to resolution effects caused by the blending of several galaxies inside the large beam of single-dish instruments. Results. The N2CLS-May2021 survey reaches an average 1- noise level of 0.17 and 0.048 mJy on GOODS-N over 159 arcmin, and 0.46 and 0.14 mJy on COSMOS over 1010 arcmin, at 1.2 and 2 mm, respectively. For a purity threshold of 80%, we detect 120 and 67 sources in GOODS-N and 195 and 76 sources in COSMOS, at 1.2 and 2 mm, respectively. Our measurement connects the bright single-dish to the deep interferometric number counts. After correcting for resolution effects, our results reconcile the single-dish and interferometric number counts and are further accurately compared with model predictions
NIKA2 Cosmological Legacy Survey: Survey Description and Galaxy Number Counts
International audienceAims. Deep millimeter surveys are necessary to probe the dust-obscured galaxies at high redshift. We conducted a large observing program at 1.2 and 2 mm with the NIKA2 camera installed on the IRAM 30-meter telescope. This NIKA2 Cosmological Legacy Survey (N2CLS) covers two emblematic fields: GOODS-N and COSMOS. We introduce the N2CLS survey and present new 1.2 and 2 mm number count measurements based on the tiered N2CLS observations from October 2017 to May 2021. Methods. We develop an end-to-end simulation that combines an input sky model with the instrument noise and data reduction pipeline artifacts. This simulation is used to compute the sample purity, flux boosting, pipeline transfer function, completeness, and effective area of the survey. We used the 117 deg SIDES simulations as the sky model, which include the galaxy clustering. Our formalism allows us to correct the source number counts to obtain galaxy number counts, the difference between the two being due to resolution effects caused by the blending of several galaxies inside the large beam of single-dish instruments. Results. The N2CLS-May2021 survey reaches an average 1- noise level of 0.17 and 0.048 mJy on GOODS-N over 159 arcmin, and 0.46 and 0.14 mJy on COSMOS over 1010 arcmin, at 1.2 and 2 mm, respectively. For a purity threshold of 80%, we detect 120 and 67 sources in GOODS-N and 195 and 76 sources in COSMOS, at 1.2 and 2 mm, respectively. Our measurement connects the bright single-dish to the deep interferometric number counts. After correcting for resolution effects, our results reconcile the single-dish and interferometric number counts and are further accurately compared with model predictions
NIKA2 Cosmological Legacy Survey: Survey Description and Galaxy Number Counts
International audienceAims. Deep millimeter surveys are necessary to probe the dust-obscured galaxies at high redshift. We conducted a large observing program at 1.2 and 2 mm with the NIKA2 camera installed on the IRAM 30-meter telescope. This NIKA2 Cosmological Legacy Survey (N2CLS) covers two emblematic fields: GOODS-N and COSMOS. We introduce the N2CLS survey and present new 1.2 and 2 mm number count measurements based on the tiered N2CLS observations from October 2017 to May 2021. Methods. We develop an end-to-end simulation that combines an input sky model with the instrument noise and data reduction pipeline artifacts. This simulation is used to compute the sample purity, flux boosting, pipeline transfer function, completeness, and effective area of the survey. We used the 117 deg SIDES simulations as the sky model, which include the galaxy clustering. Our formalism allows us to correct the source number counts to obtain galaxy number counts, the difference between the two being due to resolution effects caused by the blending of several galaxies inside the large beam of single-dish instruments. Results. The N2CLS-May2021 survey reaches an average 1- noise level of 0.17 and 0.048 mJy on GOODS-N over 159 arcmin, and 0.46 and 0.14 mJy on COSMOS over 1010 arcmin, at 1.2 and 2 mm, respectively. For a purity threshold of 80%, we detect 120 and 67 sources in GOODS-N and 195 and 76 sources in COSMOS, at 1.2 and 2 mm, respectively. Our measurement connects the bright single-dish to the deep interferometric number counts. After correcting for resolution effects, our results reconcile the single-dish and interferometric number counts and are further accurately compared with model predictions