182 research outputs found

    Metabolic changes in concussed American football players during the acute and chronic post-injury phases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite negative neuroimaging findings many athletes display neurophysiological alterations and post-concussion symptoms that may be attributable to neurometabolic alterations.</p> <p>Methods</p> <p>The present study investigated the effects of sports concussion on brain metabolism using <sup>1</sup>H-MR Spectroscopy by comparing a group of 10 non-concussed athletes with a group of 10 concussed athletes of the same age (mean: 22.5 years) and education (mean: 16 years) within both the acute and chronic post-injury phases. All athletes were scanned 1-6 days post-concussion and again 6-months later in a 3T Siemens MRI.</p> <p>Results</p> <p>Concussed athletes demonstrated neurometabolic impairment in prefrontal and motor (M1) cortices in the acute phase where NAA:Cr levels remained depressed relative to controls. There was some recovery observed in the chronic phase where Glu:Cr levels returned to those of control athletes; however, there was a pathological increase of m-I:Cr levels in M1 that was only present in the chronic phase.</p> <p>Conclusions</p> <p>These results confirm cortical neurometabolic changes in the acute post-concussion phase as well as recovery and continued metabolic abnormalities in the chronic phase. The results indicate that complex pathophysiological processes differ depending on the post-injury phase and the neurometabolite in question.</p

    Neuroimaging findings in pediatric sports-related concussion

    No full text

    Genetic findings in sport-related concussions: potential for individualized medicine?

    No full text
    Concussion is a traumatic transient disturbance of the brain. In sport, the initial time and severity of concussion is known giving an opportunity for subsequent analysis. Variability in susceptibility and recovery between individual athletes depends, among other parameters, on genetic factors. The genes-encoding polypeptides that determine incidence, severity and prognosis for concussion are the primary candidates for genetic analysis. Genetic polymorphisms in the genes contributing to plasticity and repair (APOE), synaptic connectivity (GRIN2A), calcium influx (CACNA1E), uptake and deposit of glutamate (SLC17A7) are potential biomarkers of concussion incidence and recovery rate. With catalogued genetic variants, prospective genotyping of athletes at the beginning of their career will allow medical professionals to improve concussion management and return-to-play decisions

    Prolonged cognitive–motor impairments in children and adolescents with a history of concussion

    No full text
    Aim: We investigated whether children and adolescents with concussion history show cognitive–motor integration (CMI) deficits. Method: Asymptomatic children and adolescents with concussion history (n = 50; mean 12.84 years) and no history (n = 49; mean: 11.63 years) slid a cursor to targets using their finger on a dual-touch-screen laptop; target location and motor action were not aligned in the CMI task. Results: Children and adolescents with concussion history showed prolonged CMI deficits, in that their performance did not match that of no history controls until nearly 2 years postevent. Conclusion: These CMI deficits may be due to disruptions in fronto-parietal networks, contributing to an increased vulnerability to further injury. Current return-to-play assessments that do not test CMI may not fully capture functional abilities postconcussion
    corecore