4 research outputs found

    Experimental Performance Evaluation of Bit-Rate Selection Algorithms in Multi-Vehicular Networks

    Get PDF
    IEEE 802.11 PHY supports multiple transmission rates according to multiple different modulations and coding schemes. Each WiFi station selects its own transmission rate according to its own algorithm; in particular, the IEEE 802.11 standards do not specify the bit-rate selection method. Although many adaptive bit-rate selection algorithms have been proposed, there is limited research and evaluation on the performance of such algorithms for roadside networks, especially in cases with multi-vehicle roadside multi-vehicular WiFi networks. In this thesis we propose an opportunistic highest bit-rate algorithm, Opportunistic Highest Bit-Rate Multi-Vehicular WiFi Networks (OHBR-MVN), specifically for roadside multi-vehicular WiFi networks. Our proposal is based on three key characteristics of such networks: (1) vehicles will drive closer to, and eventually pass, the roadside WiFi station, experiencing a progressively better transmission environment; (2) the vast majority of data transmitted in single-vehicle drive-by downloading scenarios occurs at the maximum transmission rate; (3) vehicles that transmit at less than the maximum rate do so at the expense of those that could send more data at a higher transmission rate. We therefore believe that transmitting only at the highest possible bit-rate is the preferred algorithm for such networks. Further, this approach keeps the bit-rate selection extremely simple, avoiding the complexity and resulting problems of adaptive approaches. Through a series of experiments that compare the throughput of both fixed and adaptive bit-rate selection algorithms we show that our approach yields both higher throughput and better fairness characteristics, while being significantly simple, and thus more robust

    Self‐Reinforced Inductive Effect of Symmetric Bipolar Organic Molecule for High‐Performance Rechargeable Batteries

    No full text
    Abstract Herein, the self‐reinforced inductive effect derived from coexistence of both p‐ and n‐type redox‐active motifs in a single organic molecule is presented. Molecular orbital energy levels of each motif are dramatically tuned, which leads to the higher oxidation and the lower reduction potentials. The self‐reinforced inductive effect of the symmetric bipolar organic molecule, N,N’‐dimethylquinacridone (DMQA), is corroborated, by both experimental and theoretical methods. Furthermore, its redox mechanism and reaction pathway in the Li+‐battery system are scrutinized. DMQA shows excellent capacity retention at the operating voltage of 3.85 and 2.09 V (vs Li+/Li) when used as the cathode and anode, respectively. Successful operation of DMQA electrodes in a symmetric all‐organic battery is also demonstrated. The comprehensive insight into the energy storage capability of the symmetric bipolar organic molecule and its self‐reinforced inductive effect is provided. Thus, a new class of organic electrode materials for symmetric all‐organic batteries as well as conventional rechargeable batteries can be conceived

    Cooperative Conformational Change of a Single Organic Molecule for Ultrafast Rechargeable Batteries

    No full text
    We unveil that the conformational change of a single organic molecule during the redox reaction leads to impressive battery performance for the first time. We propose the model material, a phenoxazin-3-one derivative, as a new redox-active bioinspired single molecule for the Li-ion rechargeable battery. The phenoxazin-3-one cathode delivered a high discharge capacity (298 mAh g(-1)) and fast rate capability (65% capacity retention at 10 C). We elaborate the redox mechanism and reaction pathway of phenoxazin-3-one during Li+-coupled redox reaction. The molecular structure alteration of phenoxazin-3-one during the lithium-coupled electron transfer reaction enables strong pi-pi interaction between 2Li-phenoxazin-3-one and carbon, which was evidenced by operando Raman spectroscopy and density functional theory calculation. Our work provides in-depth understanding about the conformational molecular switch of the single molecule during Li+-coupled redox reaction and insight into the design of a new class of organic electrode materials.N

    Biological Nicotinamide Cofactor as a Redox-Active Motif for Reversible Electrochemical Energy Storage

    No full text
    Nicotinamide adenine dinucleotide (NAD(+)) is one of the most well-known redox cofactors carrying electrons. Now, it is reported that the intrinsically charged NAD(+) motif can serve as an active electrode in electrochemical lithium cells. By anchoring the NAD(+) motif by the anion incorporation, redox activity of the NAD(+) is successfully implemented in conventional batteries, exhibiting the average voltage of 2.3 V. The operating voltage and capacity are tunable by altering the anchoring anion species without modifying the redox center itself. This work not only demonstrates the redox capability of NAD(+), but also suggests that anchoring the charged molecules with anion incorporation is a viable new approach to exploit various charged biological cofactors in rechargeable battery systems.
    corecore