3,467 research outputs found

    Proton recoil polarization in exclusive (e,e'pp) reactions

    Full text link
    The general formalism of nucleon recoil polarization in the (e⃗,eâ€ČN⃗N{\vec e},e'{\vec N}N) reaction is given. Numerical predictions are presented for the components of the outgoing proton polarization and of the polarization transfer coefficient in the specific case of the exclusive 16^{16}O(e⃗,eâ€Čp⃗p{\vec e},e'{\vec p}p)14^{14}C knockout reaction leading to discrete states in the residual nucleus. Reaction calculations are performed in a direct knockout framework where final-state interactions and one-body and two-body currents are included. The two-nucleon overlap integrals are obtained from a calculation of the two-proton spectral function of 16^{16}O where long-range and short-range correlations are consistently included. The comparison of results obtained in different kinematics confirms that resolution of different final states in the 16^{16}O(e⃗,eâ€Čp⃗p{\vec e},e'{\vec p}p)14^{14}C reaction may act as a filter to disentangle and separately investigate the reaction processes due to short-range correlations and two-body currents and indicates that measurements of the components of the outgoing proton polarization may offer good opportunities to study short-range correlations.Comment: 12 pages, 6 figure

    Electromagnetic and strong isospin-breaking corrections to the muon g−2g - 2 from Lattice QCD+QED

    Get PDF
    We present a lattice calculation of the leading-order electromagnetic and strong isospin-breaking corrections to the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon. We employ the gauge configurations generated by the European Twisted Mass Collaboration (ETMC) with Nf=2+1+1N_f = 2+1+1 dynamical quarks at three values of the lattice spacing (a≃0.062,0.082,0.089a \simeq 0.062, 0.082, 0.089 fm) with pion masses between ≃210\simeq 210 and ≃450\simeq 450 MeV. The results are obtained adopting the RM123 approach in the quenched-QED approximation, which neglects the charges of the sea quarks. Quark disconnected diagrams are not included. After the extrapolations to the physical pion mass and to the continuum and infinite-volume limits the contributions of the light, strange and charm quarks are respectively equal to ÎŽaÎŒHVP(ud)=7.1 (2.5)⋅10−10\delta a_\mu^{\rm HVP}(ud) = 7.1 ~ (2.5) \cdot 10^{-10}, ÎŽaÎŒHVP(s)=−0.0053 (33)⋅10−10\delta a_\mu^{\rm HVP}(s) = -0.0053 ~ (33) \cdot 10^{-10} and ÎŽaÎŒHVP(c)=0.0182 (36)⋅10−10\delta a_\mu^{\rm HVP}(c) = 0.0182 ~ (36) \cdot 10^{-10}. At leading order in αem\alpha_{em} and (md−mu)/ΛQCD(m_d - m_u) / \Lambda_{QCD} we obtain ÎŽaÎŒHVP(udsc)=7.1 (2.9)⋅10−10\delta a_\mu^{\rm HVP}(udsc) = 7.1 ~ (2.9) \cdot 10^{-10}, which is currently the most accurate determination of the isospin-breaking corrections to aÎŒHVPa_\mu^{\rm HVP}.Comment: 23 pages, 7 figures, 5 tables. Version to appear in PRD. A bug in the update of the strange and charm contributions is removed and an extended discussion on the identification of the ground-state is included. arXiv admin note: text overlap with arXiv:1808.00887, arXiv:1707.0301

    Short-range and tensor correlations in the 16^{16}O(e,eâ€Č'pn) reaction

    Get PDF
    The cross sections for electron induced two-nucleon knockout reactions are evaluated for the example of the 16^{16}O(e,eâ€Č'pn)14^{14}N reaction leading to discrete states in the residual nucleus 14^{14}N. These calculations account for the effects of nucleon-nucleon correlations and include the contributions of two-body meson exchange currents as the pion seagull, pion in flight and the isobar current contribution. The effects of short-range as well as tensor correlations are calculated within the framework of the coupled cluster method employing the Argonne V14 potential as a model for a realistic nucleon-nucleon interaction. The relative importance of correlation effects as compared to the contribution of the meson exchange currents depends on the final state of the residual nucleus. The cross section leading to specific states, like e.g. the ground state of 14^{14}N, is rather sensitive to the details of the correlated wave function.Comment: 16 pages, 9 figures include

    A co-ultramicronized palmitoylethanolamide/luteolin composite mitigates clinical score and disease-relevant molecular markers in a mouse model of experimental autoimmune encephalomyelitis

    Get PDF
    Background: Persistent and/or recurrent inflammatory processes are the main factor leading to multiple sclerosis (MS) lesions. The composite ultramicronized palmitoylethanolamide, an endogenous N-acylethanolamine, combined with the flavonoid luteolin, PEALut, have been found to exert neuroprotective activities in experimental models of spinal and brain injury and Alzheimer disease, as well as a clinical improvement in human stroke patients. Furthermore, PEALut enhances the expression of different myelin proteins in oligodendrocyte progenitor cells suggesting that this composite might have protective effects in MS experimental models. Methods: The mouse model of experimental autoimmune encephalomyelitis (EAE) based on active immunization with a fragment of myelin oligodendrocyte glycoprotein (MOG35-55) was used. The daily assessment of clinical score and the expression of serum amyloid A (SAA1), proinflammatory cytokines TNF-\u3b1, IL-1\u3b2, IFN-\u3b3, and NLRP3 inflammasome, as well as TLR2, Fpr2, CD137, CD3-\u3b3, and TCR-\u3b6 chain, heterodimers that form T cell surface glycoprotein (TCR), and cannabinoid receptors CB1, CB2, and MBP, were evaluated in the brainstem and cerebellum at different postimmunization days (PIDs). Results: Vehicle-MOG35-55-immunized (MOG35-55) mice developed ascending paralysis which peaked several days later and persisted until the end of the experiment. PEALut, given intraperitoneally daily starting on day 11 post-immunization, dose-dependently improved clinical score over the range 0.1-5 mg/kg. The mRNA expression of SAA1, TNF-\u3b1, IL-1\u3b2, IFN-\u3b3, and NLRP3 were significantly increased in MOG35-55 mice at 14 PID. In MOG35-55 mice treated with 5 mg /kg PEALut, the increase of SAA1, TNF- \u3b1, IL-1\u3b2, and IFN-\u3b3transcripts at 14 PID was statistically downregulated as compared to vehicle-MOG35-55 mice (p < 0.05). The expression of TLR2, Fpr2, CD137, CD3-\u3b3, TCR-\u3b6 chain, and CB2 receptors showed a significant upregulation in vehicle-MOG35-55 mice at 14 PID. Instead, CB1 and MBP transcripts have not changed in expression at any time. In MOG/PEALut-treated mice, TLR2, Fpr2, CD137, CD3-\u3b3, TCR-\u3b6 chain, and CB2 mRNAs were significantly downregulated as compared to vehicle MOG35-55 mice. Conclusions: The present results demonstrate that the intraperitoneal administration of the composite PEALut significantly reduces the development of clinical signs in the MOG35-55 model of EAE. The dose-dependent improvement of clinical score induced by PEALut was associated with a reduction in transcript expression of the acute-phase protein SAA1, TNF-\u3b1, IL-1\u3b2, IFN-\u3b3, and NLRP3 proinflammatory proteins and TLR2, Fpr2, CD137, CD3-\u3b3, TCR-\u3b6 chain, and CB2 receptors

    Quenched Hadron Spectrum and Decay Constants on the lattice

    Get PDF
    In this talk we present the results obtained from a study of O(2000){\cal O}(2000) (quenched) lattice configurations from the APE collaboration, at 6.0≀ÎČ≀6.46.0\le\beta\le 6.4, using both the Wilson and the SW-Clover fermion action. We determine the light hadronic spectrum and the meson decay constants. For the light-light systems we find an agreement with the experimental data of ∌5\sim 5% for mesonic masses and ∌10\sim 10%-15% for baryonic masses and pseudoscalar decay constants; a larger deviation is present for the vector decay constants. For the heavy-light decay constants we find fDs=237±16MeV,fD=221±17MeV(fDs/fD=1.07(4)),fBs=205±35MeV,fB=180±32MeV(fBs/fB=1.14(8))f_{D_s}=237 \pm 16 MeV, f_{D} = 221 \pm 17 MeV (f_{D_s}/f_D=1.07(4)), f_{B_s} = 205 \pm 35 MeV, f_{B} = 180 \pm 32 MeV (f_{B_s}/f_B=1.14(8)), in good agreement with previous estimates.Comment: 8 pages, latex, Talk given at XXV ITEP Winter School of Physics, Moscow - Russia, 18-27 Feb 199

    Leading isospin-breaking corrections to pion, kaon and charmed-meson masses with Twisted-Mass fermions

    Get PDF
    We present a lattice computation of the isospin-breaking corrections to pseudoscalar meson masses using the gauge configurations produced by the European Twisted Mass collaboration with Nf=2+1+1N_f = 2 + 1 + 1 dynamical quarks at three values of the lattice spacing (a≃0.062,0.082a \simeq 0.062, 0.082 and 0.0890.089 fm) with pion masses in the range Mπ≃210−450M_\pi \simeq 210 - 450 MeV. The strange and charm quark masses are tuned at their physical values. We adopt the RM123 method based on the combined expansion of the path integral in powers of the dd- and uu-quark mass difference (m^d−m^u\widehat{m}_d - \widehat{m}_u) and of the electromagnetic coupling αem\alpha_{em}. Within the quenched QED approximation, which neglects the effects of the sea-quark charges, and after the extrapolations to the physical pion mass and to the continuum and infinite volume limits, we provide results for the pion, kaon and (for the first time) charmed-meson mass splittings, for the prescription-dependent parameters ϔπ0\epsilon_{\pi^0}, \epsilon_\gamma(\overline{MS}, 2~\mbox{GeV}), \epsilon_{K^0}(\overline{MS}, 2~\mbox{GeV}), related to the violations of the Dashen's theorem, and for the light quark mass difference (\widehat{m}_d - \widehat{m}_u)(\overline{MS}, 2~\mbox{GeV}).Comment: 47 pages, 20 figures, 4 tables; comments on QED and QCD splitting prescriptions added; version to appear in PR

    The Chiral Condensate of Strongly Coupled QCD in the 't Hooft Limit

    Full text link
    Using the recently proposed generalization to an arbitrary number of colors of the strong coupling approach to lattice gauge theories\cite{Grignani:2003uv}, we compute the chiral condensate of massless QCD in the 't Hooft limit.Comment: 12 pages, revtex

    Strange and charm HVP contributions to the muon (g−2)g - 2) including QED corrections with twisted-mass fermions

    Get PDF
    We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution of the strange and charm quarks to the anomalous magnetic moment of the muon including leading-order electromagnetic corrections. We employ the gauge configurations generated by the European Twisted Mass Collaboration (ETMC) with Nf=2+1+1N_f = 2+1+1 dynamical quarks at three values of the lattice spacing (a≃0.062,0.082,0.089a \simeq 0.062, 0.082, 0.089 fm) with pion masses in the range Mπ≃210−450M_\pi \simeq 210 - 450 MeV. The strange and charm quark masses are tuned at their physical values. Neglecting disconnected diagrams and after the extrapolations to the physical pion mass and to the continuum limit we obtain: aÎŒs(αem2)=(53.1±2.5)⋅10−10a_\mu^s(\alpha_{em}^2) = (53.1 \pm 2.5) \cdot 10^{-10}, aÎŒs(αem3)=(−0.018±0.011)⋅10−10a_\mu^s(\alpha_{em}^3) = (-0.018 \pm 0.011) \cdot 10^{-10} and aÎŒc(αem2)=(14.75±0.56)⋅10−10a_\mu^c(\alpha_{em}^2) = (14.75 \pm 0.56) \cdot 10^{-10}, aÎŒc(αem3)=(−0.030±0.013)⋅10−10a_\mu^c(\alpha_{em}^3) = (-0.030 \pm 0.013) \cdot 10^{-10} for the strange and charm contributions, respectively.Comment: 34 pages, 10 figures, 5 tables; version to appear in JHE

    Final State Interaction in Exclusive (e,eâ€ČNN)(e,e'NN) Reactions

    Get PDF
    Contributions of nucleon-nucleon (NN) correlations, meson exchange currents and the residual final state interactions (FSI) on exclusive two-nucleon knock-out reactions induced by electron scattering are investigated. All contributions are derived from the same realistic meson exchange model for the NN interaction. Effects of correlations and FSI are determined in a consistent way by solving the NN scattering equation, the Bethe-Goldstone equation, for two nucleons in nuclear matter. One finds that the FSI re-scattering terms are non-negligible even if the two nucleons are emitted back to back.Comment: 8 pages, 5 figure

    Light hadron spectroscopy on the lattice with the non-perturbatively improved Wilson action

    Get PDF
    We present results for the light meson masses and decay constants as obtained from calculations with the non-perturbatively improved (`Alpha') action and operators on a 24^3 \times 64 lattice at beta = 6.2, in the quenched approximation. The analysis was performed in a way consistent with O(a) improvement. We obtained: reasonable agreement with experiment for the hyperfine splitting; f_K=156(17) MeV, f_pi =139(22) MeV, f_K/f_pi = 1.13(4) ; f_{K*}=219(7) MeV, f_rho =199(15) MeV, f_phi =235(4) MeV; f_{K*}^{T}(2 GeV) = 178(10) MeV, f_rho^{T}(2 GeV) =165(11) MeV, where f_V^{T} is the coupling of the tensor current to the vector mesons; the chiral condensate ^\bar{MS} (2 GeV)= - (253 +/- 25 MeV)^3. Our results are compared to those obtained with the unimproved Wilson action. We also verified that the free-boson lattice dispersion relation describes our results very accurately for a large range of momenta.Comment: 29 pages (LaTeX), 14 Postscript figure
    • 

    corecore