42 research outputs found

    Lung Matrix Metalloproteinase Activation following Partial Hepatic Ischemia/Reperfusion Injury in Rats

    Get PDF
    Purpose. Warm hepatic ischemia-reperfusion (I/R) injury can lead to multiorgan dysfunction. The aim of the present study was to investigate whether acute liver I/R does affect the function and/or structure of remote organs such as lung, kidney, and heart via modulation of extracellular matrix remodelling. Methods. Male Sprague-Dawley rats were subjected to 30 min partial hepatic ischemia by clamping the hepatic artery and the portal vein. After a 60 min reperfusion, liver, lung, kidney, and heart biopsies and blood samples were collected. Serum hepatic enzymes, creatinine, urea, Troponin I and TNF-alpha, and tissue matrix metalloproteinases (MMP-2, MMP-9), myeloperoxidase (MPO), malondialdehyde (MDA), and morphology were monitored. Results. Serum levels of hepatic enzymes and TNF-alpha were concomitantly increased during hepatic I/R. An increase in hepatic MMP-2 and MMP-9 activities was substantiated by tissue morphology alterations. Notably, acute hepatic I/R affect the lung inasmuch as MMP-9 activity and MPO levels were increased. No difference in MMPs and MPO was observed in kidney and heart. Conclusions. Although the underlying mechanism needs further investigation, this is the first study in which the MMP activation in a distant organ is reported; this event is probably TNF-alpha-mediated and the lung appears as the first remote organ to be involved in hepatic I/R injury

    Matrix metalloprotease activity is enhanced in the compensated but not in the decompensated phase of pressure overload hypertrophy

    Get PDF
    BACKGROUND: During the transition of pressure overload hypertrophy (POH) to heart failure (HF) there is intense interstitial cardiac remodeling, characterized by a complex balance between collagen deposition and degradation by matrix metalloproteases (MMPs). This study was aimed at investigating the process of cardiac remodeling during the different phases of the transition of POH to HF. METHODS: Guinea pigs underwent thoracic descending aortic banding or sham operation. Twelve weeks after surgery, left-ventricular (LV) end-diastolic internal dimension and ventricular systolic pressure were measured by combined M-mode echocardiography and micromanometer cathetherization. The MMP activity, tissue-specific MMP inhibitors (TIMPs), and collagen fraction were evaluated in LV tissue samples by zymography, ELISA, and computer-aided analysis, respectively. RESULTS: Banded animals were divided by lung weight values into either compensated left-ventricular hypertrophy (LVH) or HF groups, as compared with sham-operated controls. All HF animals exhibited a restrictive pattern of Doppler transmitral inflow, indicative of diastolic dysfunction, and developed lung congestion. Compensated LVH was associated with increased MMP-2 activity, which was blunted after transition to HF, at a time when TIMP-2 levels and collagen deposition were increased. CONCLUSIONS: The cardiac remodeling process that accompanies the development of POH is a phase-dependent process associated with progressive deterioration of cardiac function

    Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload

    Get PDF
    Chronic pressure-overload and diabetes mellitus are two frequent disorders affecting the heart. We aimed to characterize myocardial structural and functional changes induced by both conditions. Pressure-overload was established in Wistar-han male rats by supra-renal aortic banding. Six-weeks later, diabetes was induced by streptozotocin (65 mg/kg,ip), resulting in four groups: SHAM, banding (BA), diabetic (DM) and diabetic-banding (DB). Six-weeks later, pressure-volume loops were obtained and left ventricular samples were collected to evaluate alterations in insulin signalling pathways, extracellular matrix as well as myofilament function and phosphorylation. Pressure-overload increased cardiomyocyte diameter (BA 22.0 ± 0.4 μm, SHAM 18.2 ± 0.3 μm) and myofilament maximal force (BA 25.7 ± 3.6 kN/m(2), SHAM 18.6 ± 1.4 kN/m(2)), Ca(2+) sensitivity (BA 5.56 ± 0.02, SHAM 5.50 ± 0.02) as well as MyBP-C, Akt and Erk phosphorylation, while decreasing rate of force redevelopment (K (tr); BA 14.9 ± 1.1 s(-1), SHAM 25.2 ± 1.5 s(-1)). At the extracellular matrix level, fibrosis (BA 10.8 ± 0.9%, SHAM 5.3 ± 0.6%), pro-MMP-2 and MMP-9 activities increased and, in vivo, relaxation was impaired (τ; BA 14.0 ± 0.9 ms, SHAM 12.9 ± 0.4 ms). Diabetes increased cardiomyocyte diameter, fibrosis (DM 21.4 ± 0.4 μm, 13.9 ± 1.8%, DB 20.6 ± 0.4 μm, 13.8 ± 0.8%, respectively), myofilament Ca(2+)sensitivity (DM 5.57 ± 0.02, DB 5.57 ± 0.01), advanced glycation end-product deposition (DM 4.9 ± 0.6 score/mm(2), DB 5.1 ± 0.4 score/mm(2), SHAM 2.1 ± 0.3 score/mm(2)), and apoptosis, while decreasing K (tr) (DM 13.5 ± 1.9 s(-1), DB 15.2 ± 1.4 s(-1)), Akt phosphorylation and MMP-9/TIMP-1 and MMP-1/TIMP-1 ratios. Diabetic hearts were stiffer (higher end-diastolic-pressure: DM 7.0 ± 1.2 mmHg, DB 6.7 ± 0.7 mmHg, SHAM 5.3 ± 0.4 mmHg, steeper end-diastolic-pressure-volume relation: DM 0.59 ± 0.18, DB 0.83 ± 0.17, SHAM 0.41 ± 0.10), and hypo-contractile (decreased end-systolic-pressure-volume-relation). DB animals presented further pulmonary congestion (Lungs/body-weight: DB 5.23 ± 0.21 g/kg, SHAM 3.80 ± 0.14 g/kg) as this group combined overload-induced relaxation abnormalities and diabetes-induced stiffness. Diabetes mellitus and pressure overload led to distinct diastolic dysfunction phenotypes: while diabetes promoted myocardial stiffening, pressure overload impaired relaxation. The association of these damages accelerates the progression of diastolic heart failure progression in diabetic-banded animals

    Role of matrix metalloproteinases in cholestasis and hepatic ischemia/reperfusion injury: A review

    No full text
    corecore