2,256 research outputs found

    Similitude theory applied to plates in vibroacoustic field: a review up to 2020

    Get PDF
    Similitude methods are a set of tools which allow the design of scaled-up or scaled-down models of a full-scale structure called a prototype. In this way, the financial and temporal costs of experimental tests, and the problems associated with the set-up of too large (or small) test articles, may be overcome. This article provides a brief review of similitude methods applied to plates in a vibroacoustic field. Particularly, it is dedicated to a thorough analysis of similitude conditions and scaling laws for uncovering commonalities and differences, and physical interpretations, obtained from applying different scaling methods

    A Review of Similitude Methods for Structural Engineering

    Get PDF
    Similitude theory allows, through a set of tools known as similitude methods, to establish the conditions to design a scaled (up or down) model of a full-scale structure, usually defined as prototype. In the last years, to overcome the problems associated with full-scale testing, such as costs and setup, research on similitude methods has grown and their application has expanded in many branches of engineering. The aim of this paper is to provide a review as comprehensive as possible about similitude methods applied to structural engineering; after a brief historical introduction and a more deep analysis of the main methods, the article focuses on the applications classified by test articles

    Numerical investigations about the sound transmission loss of a fuselage panel section with embedded periodic foams

    Get PDF
    Abstract The scope of this paper is to investigate the sound transmission loss of a typical fuselage panel section, as well as to propose solutions based on the inclusion of a periodic pattern inside its foam core, which aim at passively improving the acoustic performance in a mid-high range of frequencies. In detail, a new fuselage panel configuration is numerically studied, starting from the state of the art regarding the acoustic packages based on porous meta-materials. The main novelties of the present work are represented by the application of a meta-core solution inside an acoustic package of aeronautical interest, as well as a systematic investigation of the effects deriving from its geometrical parameters. In order to reach this goal, a numerical model of a fuselage panel section is studied, and the effect of several periodic patterns are simulated; more specifically, twelve configurations are taken into account, each with different radius of the inclusions and number of unit cells along the thickness. For each of these layouts, the mass increase of the so-called meta-core, compared to that of its classical homogeneous counterpart, is estimated, together with the associated mid-band frequency and amplitude of the sound transmission loss peak, which is caused by the additional acoustic modes excited by the periodic nature of the meta-core itself. Results are presented in terms of tables and graphs, which may constitute a good basis in order to perform preliminary design considerations that could be interesting for further generalizations

    Transmission Loss Analyses on Different Angular Distributions of Periodic Inclusions in a Porous Layer

    Get PDF
    The scope of this paper is to investigate the sound transmission loss of an acoustic package of glass wool with embedded periodic inclusions, considering the possibility to improve a standard configuration and inserting the innovative package in a practical configuration used in the aeronautic field for noise suppression. Periodic inclusions are introduced to enhance the sound transmission loss performance of the acoustic package in the mid-high range of frequencies. The main interest of the present work, with respect to the state of the art, is represented by the arrangement of the inclusions one respect to the others, then creating an inclusion pattern that improves the performance of the periodicity peak. To reach this goal, a numerical model of the package is studied, and the effect of the patterns of periodic inclusions is simulated. The pattern behavior is evaluated for eight configurations, which are different from each other for the cubic dimensions and the inclusion radii. Furthermore, an optimized configuration for aeronautical applications is designed starting from the studied acoustic package; then, the results in terms of mass and performance are discussed. Results are presented in terms of tables and graphs, which may constitute a good basis to perform preliminary design consideration that could be interesting for further generalizations
    • …
    corecore