37 research outputs found

    Thioredoxin 80-Activated-Monocytes (TAMs) Inhibit the Replication of Intracellular Pathogens

    Get PDF
    BACKGROUND: Thioredoxin 80 (Trx80) is an 80 amino acid natural cleavage product of Trx, produced primarily by monocytes. Trx80 induces differentiation of human monocytes into a novel cell type, named Trx80-activated-monocytes (TAMs). PRINCIPAL FINDINGS: In this investigation we present evidence for a role of TAMs in the control of intracellular bacterial infections. As model pathogens we have chosen Listeria monocytogenes and Brucella abortus which replicate in the cytosol and the endoplasmic reticulum respectively. Our data indicate that TAMs efficiently inhibit intracellular growth of both L. monocytogenes and B. abortus. Further analysis shows that Trx80 activation prevents the escape of GFP-tagged L. monocytogenes into the cytosol, and induces accumulation of the bacteria within the lysosomes. Inhibition of the lysosomal activity by chloroquine treatment resulted in higher replication of bacteria in TAMs compared to that observed in control cells 24 h post-infection, indicating that TAMs kill bacteria by preventing their escape from the endosomal compartments, which progress into a highly degradative phagolysosome. SIGNIFICANCE: Our results show that Trx80 potentiates the bactericidal activities of professional phagocytes, and contributes to the first line of defense against intracellular bacteria

    Mitochondria in Ageing and Diseases: The Super Trouper of the Cell

    No full text
    The past decade has witnessed an explosion of knowledge regarding how mitochondrial dysfunction may translate into ageing and disease phenotypes, as well as how it is modulated by genetic and lifestyle factors.[...

    Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin?

    No full text
    Mitochondrial dysfunction and impairment of the ubiquitin proteasome system have been described as two hallmarks of the ageing process. Additionally, both systems have been implicated in the etiopathogenesis of many age-related diseases, particularly neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Interestingly, these two systems are closely interconnected, with the ubiquitin proteasome system maintaining mitochondrial homeostasis by regulating organelle dynamics, the proteome, and mitophagy, and mitochondrial dysfunction impairing cellular protein homeostasis by oxidative damage. Here, we review the current literature and argue that the interplay of the two systems should be considered in order to better understand the cellular dysfunction observed in ageing and age-related diseases. Such an approach may provide valuable insights into molecular mechanisms underlying the ageing process, and further discovery of treatments to counteract ageing and its associated diseases. Furthermore, we provide a hypothetical model for the heterogeneity described among individuals during ageing

    Histological-based stainings using free-floating tissue sections

    No full text
    Immunohistochemistry is a widely used technique to visualize specific tissue structures as well as protein expression and localization. Two alternative approaches are widely used to handle the tissue sections during the staining procedure, one approach consists of mounting the sections directly on glass slides, while a second approach, the free-floating, allows for fixed sections to be maintained and stained while suspended in solution. Although slide-mounted and free-floating approaches may yield similar results, the free-floating technique allows for better antibody penetration and thus should be the method of choice when thicker sections are to be used for 3D reconstruction of the tissues, for example when the focus of the experiment is to gain information on dendritic and axonal projections in brain regions. In addition, since the sections are kept in solution, a single aliquot can easily accommodate 30 to 40 sections, handling of which is less laborious, particularly in large-scale biomedical studies. Here, we illustrate how to apply the free-floating method to fluorescent immunohistochemistry staining, with a major focus on brain sections. We will also discuss how the free-floating technique can easily be modified to fit the individual needs of researchers and adapted to other tissues as well as other histochemical-based stainings, such as hematoxylin and eosin and cresyl violet, as long as tissue samples are properly fixed, typically with paraformaldehyde or formalin

    Mitochondria in Ageing and Diseases: Partie Deux

    No full text
    The past several decades has seen a huge expansion of the knowledge and research of mitochondrial dysfunction and the role it plays in ageing and age-related diseases [...

    High Avidity Binding to DNA Protects Ubiquitylated Substrates from Proteasomal Degradation*

    Get PDF
    Protein domains that act as degradation and stabilization signals regulate the rate of turnover of proteasomal substrates. Here we report that the bipartite Gly-Arg repeat of the Epstein-Barr virus (EBV) nuclear antigen (EBNA)-1 acts as a stabilization signal that inhibits proteasomal degradation in the nucleus by promoting binding to cellular DNA. Protection can be transferred by grafting the domain to unrelated proteasomal substrates and does not involve changes of ubiquitylation. Protection is also afforded by other protein domains that, similar to the Gly-Arg repeat, mediate high avidity binding to DNA, as exemplified by resistance to detergent extraction. Our findings identify high avidity binding to DNA as a portable inhibitory signal that counteracts proteasomal degradation
    corecore