7 research outputs found

    Adiponectin, diabetes and ischemic heart failure: a challenging relationship

    Get PDF
    Abstract Background Several peptides, named adipokines, are produced by the adipose tissue. Among those, adiponectin (AD) is the most abundant. AD promotes peripheral insulin sensitivity, inhibits liver gluconeogenesis and displays anti-atherogenic and anti-inflammatory properties. Lower levels of AD are related to a higher risk of myocardial infarction and a worse prognosis in patients with coronary artery disease. However, despite a favorable clinical profile, AD increases in relation to worsening heart failure (HF); in this context, higher adiponectinemia is reliably related to poor prognosis. There is still little knowledge about how certain metabolic conditions, such as diabetes mellitus, modulate the relationship between AD and HF. We evaluated the level of adiponectin in patients with ischemic HF, with and without type 2 diabetes, to elucidate whether the metabolic syndrome was able to influence the relationship between AD and HF. Results We demonstrated that AD rises in patients with advanced HF, but to a lesser extent in diabetics than in non-diabetics. Diabetic patients with reduced systolic performance orchestrated a slower rise of AD which began only in face of overt HF. The different behavior of AD in the presence of diabetes was not entirely explained by differences in body mass index. In addition, NT-proBNP, the second strongest predictor of AD, did not differ significantly between diabetic and non-diabetic patients. These data indicate that some other mechanisms are involved in the regulation of AD in patients with type 2 diabetes and coronary artery disease. Conclusions AD rises across chronic heart failure stages but this phenomenon is less evident in type 2 diabetic patients. In the presence of diabetes, the progressive increase of AD in relation to the severity of LV dysfunction is hampered and becomes evident only in overt HF.</p

    Glucagon-Like Peptide-1, Diabetes, and Cognitive Decline: Possible Pathophysiological Links and Therapeutic Opportunities

    Get PDF
    Metabolic and neurodegenerative disorders have a growing prevalence in Western countries. Available epidemiologic and neurobiological evidences support the existence of a pathophysiological link between these conditions. Glucagon-like peptide 1 (GLP-1), whose activity is reduced in insulin resistance, has been implicated in central nervous system function, including cognition, synaptic plasticity, and neurogenesis. We review the experimental researches suggesting that GLP-1 dysfunction might be a mediating factor between Type 2 diabetes mellitus (T2DM) and neurodegeneration. Drug treatments enhancing GLP-1 activity hold out hope for treatment and prevention of Alzheimer's disease (AD) and cognitive decline

    Effects of mTOR Inhibition on Immunosenescence in the Elderly

    No full text
    Abstract: Inhibition of the mTOR pathway extends lifespan in all species studied to date, and in mice delays the onset of aging-related diseases and co-morbidities. However, it is unknown if mTOR inhibition impacts aging in humans. To begin to assess the effects of mTOR inhibition on human aging-related conditions, we evaluated whether the mTOR inhibitor RAD001 ameliorated immunosenescence (the decline in immune function during aging) in elderly volunteers, as assessed by response to influenza vaccination. Our findings suggest that RAD001 enhanced the response to influenza vaccine in elderly volunteers at doses that were relatively well tolerated. RAD001 may enhance immune function in the elderly by reducing the percentage of programmed death (PD)-1-positive CD4 and CD8 T lymphocytes that accumulate with age. These results suggest that mTOR inhibition has beneficial effects on immunosenescence in elderly volunteers. It remains to be determined if mTOR inhibitors improve other aging-related conditions in humans

    Notch3 is activated by chronic hypoxia and contributes to the progression of human prostate cancer

    No full text
    Prostate cancer (PC) is still the second cause of cancer-related death among men. Although patients with metastatic presentation have an ominous outcome, the vast majority of PCs are diagnosed at an early stage. Nonetheless, even among patients with clinically localized disease the outcome may vary considerably. Other than androgen sensitivity, little is known about which other signaling pathways are deranged in aggressive, localized cancers. The elucidation of such pathways may help to develop innovative therapies aimed at specific molecular targets. We report that in a hormone-sensitive PC cell line, LNCaP, Notch3 was activated by hypoxia and sustained cell proliferation and colony formation in soft agar. Hypoxia also modulated cellular cholesterol content and the number and size of lipid rafts, causing a coalescence of small rafts into bigger clusters; under this experimental condition, Notch3 migrated from the non-raft into the raft compartment where it colocalized with the γ-secretase complex. We also looked at human PC biopsies and found that expression of Notch3 positively correlated with Gleason score and with expression of carbonic anhydrase IX, a marker of hypoxia. In conclusion, hypoxia triggers the activation of Notch3, which, in turn, sustains proliferation of PC cells. Notch3 pathway represents a promising target for adjuvant therapy in patients with PC. Copyright © 2013 UICC
    corecore