514 research outputs found
Effects of Bark Beetle Attacks on Forest Snowpack and Avalanche Formation – Implications for Protection Forest Management
Healthy, dense forests growing in avalanche terrain reduce the likelihood of slab avalanche release by inhibiting the formation of continuous snow layers and weaknesses in the snowpack. Driven by climate change, trends towards more frequent and severe bark beetle disturbances have already resulted in the death of millions of hectares of forest in North America and central Europe, affecting snowpack in mountain forests and potentially reducing their protective capacity against avalanches. We examined the spatial variability in snow stratigraphy, i.e., the characteristic layering of the snowpack, by repeatedly measuring vertical profiles of snow penetration resistance with a digital snow micro penetrometer (SMP) along 10- and 20-m transects in a spruce beetle-infested Engelmann spruce forest in Utah, USA. Three study plots were selected characterizing different stages within a spruce beetle outbreak cycle: non-infested/green, infested \u3e 3 years ago/gray stage, and salvage-logged. A fourth plot was installed in a non-forested meadow as the control. Based on our SMP measurements and a layer matching algorithm, we quantified the spatial variability in snow stratigraphy, and tested which forest, snow and/or meteorological conditions influenced differences between our plots using linear mixed effects models. Our results showed that spatial variability in snow stratigraphy was best explained by the percentage of canopy covering a transect (R2 = 0.71, p \u3c 0.001), and that only 14% of the variance was explained by the stage within the outbreak cycle. That is, differences between green and gray stage stands did not depend much on the reduction in needle mass, but spatial variability in snow stratigraphy increased significantly with increasing forest canopy cover. At both study plots, a more heterogeneous snow stratigraphy developed, which translates to disrupted and discontinuous snow layers and, therefore, reduced avalanche formation. We attribute this to the effect that small fine branches and twigs still present in the canopy of gray stage trees have on snow interception and unloading, and especially on canopy drip. In contrast, salvage logging that reduced the canopy cover to ∼25%, led to a spatially less variable and similar snow stratigraphy as observed in the meadow. At these two study plots, a homogeneous snow stratigraphy consisting of distinct vertical and continuous slope-parallel soft and hard snow layers including weak layers had formed, a condition which is generally more prone to avalanche release. Our findings therefore emphasize advantages of leaving dead trees in place, especially in protection forests where bark beetle populations have reached epidemic levels
Disturbance Agents and Their Associated Effects on the Health of Interior Douglas-Fir Forests in the Central Rocky Mountains
Interior Douglas-fir is a prevalent forest type throughout the central Rocky Mountains. Past management actions, specifically fire suppression, have led to an expansion of this forest type. Although Douglas-fir forests cover a broad geographic range, few studies have described the interactive effects of various disturbance agents on forest health conditions. In this paper, we review pertinent literature describing the roles, linkages, and mechanisms by which disturbances, including insect outbreaks, pathogens, fire, and other abiotic factors, affect the development, structure, and distribution of interior montane forests primarily comprised of Douglas-fir. We also discuss how these effects may influence important resource values such as water, biodiversity, wildlife habitat, timber, and recreation. Finally, we identify gaps where further research may increase our understanding of these disturbance agents, their interacting roles, and how they influence long-term forest health
Recommended from our members
Developing a computationally efficient dynamic multilevel hybrid optimization scheme using multifidelity model interactions.
Many engineering application problems use optimization algorithms in conjunction with numerical simulators to search for solutions. The formulation of relevant objective functions and constraints dictate possible optimization algorithms. Often, a gradient based approach is not possible since objective functions and constraints can be nonlinear, nonconvex, non-differentiable, or even discontinuous and the simulations involved can be computationally expensive. Moreover, computational efficiency and accuracy are desirable and also influence the choice of solution method. With the advent and increasing availability of massively parallel computers, computational speed has increased tremendously. Unfortunately, the numerical and model complexities of many problems still demand significant computational resources. Moreover, in optimization, these expenses can be a limiting factor since obtaining solutions often requires the completion of numerous computationally intensive simulations. Therefore, we propose a multifidelity optimization algorithm (MFO) designed to improve the computational efficiency of an optimization method for a wide range of applications. In developing the MFO algorithm, we take advantage of the interactions between multi fidelity models to develop a dynamic and computational time saving optimization algorithm. First, a direct search method is applied to the high fidelity model over a reduced design space. In conjunction with this search, a specialized oracle is employed to map the design space of this high fidelity model to that of a computationally cheaper low fidelity model using space mapping techniques. Then, in the low fidelity space, an optimum is obtained using gradient or non-gradient based optimization, and it is mapped back to the high fidelity space. In this paper, we describe the theory and implementation details of our MFO algorithm. We also demonstrate our MFO method on some example problems and on two applications: earth penetrators and groundwater remediation
Bidirectional Relations Between Parenting and Behavior Problems From Age 8 to 13 in Nine Countries
This study used data from 12 cultural groups in nine countries (China, Colombia, Italy, Jordan, Kenya, Philippines, Sweden, Thailand, and the United States; N = 1,298) to understand the cross‐cultural generalizability of how parental warmth and control are bidirectionally related to externalizing and internalizing behaviors from childhood to early adolescence. Mothers, fathers, and children completed measures when children were ages 8–13. Multiple‐group autoregressive, cross‐lagged structural equation models revealed that child effects rather than parent effects may better characterize how warmth and control are related to child externalizing and internalizing behaviors over time, and that parent effects may be more characteristic of relations between parental warmth and control and child externalizing and internalizing behavior during childhood than early adolescence
Climate change disrupts the seasonal coupling of plant and soil microbial nutrient cycling in an alpine ecosystem
The seasonal coupling of plant and soil microbial nutrient demands is crucial for efficient ecosystem nutrient cycling and plant production, especially in strongly seasonal alpine ecosystems. Yet, how these seasonal nutrient cycling processes are modified by climate change and what the consequences are for nutrient loss and retention in alpine ecosystems remain unclear. Here, we explored how two pervasive climate change factors, reduced snow cover and shrub expansion, interactively modify the seasonal coupling of plant and soil microbial nitrogen (N) cycling in alpine grasslands, which are warming at double the rate of the global average. We found that the combination of reduced snow cover and shrub expansion disrupted the seasonal coupling of plant and soil N-cycling, with pronounced effects in spring (shortly after snow melt) and autumn (at the onset of plant senescence). In combination, both climate change factors decreased plant organic N-uptake by 70% and 82%, soil microbial biomass N by 19% and 38% and increased soil denitrifier abundances by 253% and 136% in spring and autumn, respectively. Shrub expansion also individually modified the seasonality of soil microbial community composition and stoichiometry towards more N-limited conditions and slower nutrient cycling in spring and autumn. In winter, snow removal markedly reduced the fungal:bacterial biomass ratio, soil N pools and shifted bacterial community composition. Taken together, our findings suggest that interactions between climate change factors can disrupt the temporal coupling of plant and soil microbial N-cycling processes in alpine grasslands. This could diminish the capacity of these globally widespread alpine ecosystems to retain N and support plant productivity under future climate change
Slow Solar Wind Connection Science during Solar Orbiter’s First Close Perihelion Passage
The Slow Solar Wind Connection Solar Orbiter Observing Plan (Slow Wind SOOP) was developed to utilize the extensive suite of remote-sensing and in situ instruments on board the ESA/NASA Solar Orbiter mission to answer significant outstanding questions regarding the origin and formation of the slow solar wind. The Slow Wind SOOP was designed to link remote-sensing and in situ measurements of slow wind originating at open–closed magnetic field boundaries. The SOOP ran just prior to Solar Orbiter’s first close perihelion passage during two remote-sensing windows (RSW1 and RSW2) between 2022 March 3–6 and 2022 March 17–22, while Solar Orbiter was at respective heliocentric distances of 0.55–0.51 and 0.38–0.34 au from the Sun. Coordinated observation campaigns were also conducted by Hinode and IRIS. The magnetic connectivity tool was used, along with low-latency in situ data and full-disk remote-sensing observations, to guide the target pointing of Solar Orbiter. Solar Orbiter targeted an active region complex during RSW1, the boundary of a coronal hole, and the periphery of a decayed active region during RSW2. Postobservation analysis using the magnetic connectivity tool, along with in situ measurements from MAG and SWA/PAS, showed that slow solar wind originating from two out of three of the target regions arrived at the spacecraft with velocities between ∼210 and 600 km s−1. The Slow Wind SOOP, despite presenting many challenges, was very successful, providing a blueprint for planning future observation campaigns that rely on the magnetic connectivity of Solar Orbiter
Recommended from our members
Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 developers manual.
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes
Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan
This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good
Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation
One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced.
Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI
- …