23 research outputs found

    Biological and clinical effects of abiraterone on anti-resorptive and anabolic activity in bone microenvironment

    Get PDF
    Abiraterone acetate (ABI) is associated not only with a significant survival advantage in both chemotherapy-naive and -treated patients with metastatic castration-resistant prostate cancer (mCRPC), but also with a delay in time to development of Skeletal Related Events and in radiological skeletal progression. These bone benefits may be related to a direct effect on prostate cancer cells in bone or to a specific mechanism directed to bone microenvironment. To test this hypothesis we designed an in vitro study aimed to evaluate a potential direct effect of ABI on human primary osteoclasts/osteoblasts (OCLs/OBLs). We also assessed changes in bone turnover markers, serum carboxy-terminal collagen crosslinks (CTX) and alkaline phosphatase (ALP), in 49 mCRPC patients treated with ABI.Our results showed that non-cytotoxic doses of ABI have a statistically significant inhibitory effect on OCL differentiation and activity inducing a down-modulation of OCL marker genes TRAP, cathepsin K and metalloproteinase-9. Furthermore ABI promoted OBL differentiation and bone matrix deposition up-regulating OBL specific genes, ALP and osteocalcin. Finally, we observed a significant decrease of serum CTX values and an increase of ALP in ABI-treated patients.These findings suggest a novel biological mechanism of action of ABI consisting in a direct bone anabolic and anti-resorptive activity

    БиологичСскоС ΠΈ клиничСскоС дСйствиС Π°Π±ΠΈΡ€Π°Ρ‚Π΅Ρ€ΠΎΠ½Π° Π½Π° Π°Π½Ρ‚ΠΈΡ€Π΅Π·ΠΎΡ€Π±Ρ‚ΠΈΠ²Π½ΡƒΡŽ ΠΈ Π°Π½Π°Π±ΠΎΠ»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ микроокруТСния костной Ρ‚ΠΊΠ°Π½ΠΈ

    Get PDF
    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°Π±ΠΈΡ€Π°Ρ‚Π΅Ρ€ΠΎΠ½Π° Π°Ρ†Π΅Ρ‚Π°Ρ‚Π° (АА) сопровоТдаСтся Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ выТиваСмости ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с мСтастатичСским кастрационно-рСзистСнтным Ρ€Π°ΠΊΠΎΠΌ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ (ΠΌΠšΠ Π ΠŸΠ–), Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚Π΄Π°Π»Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π΄ΠΎ развития рСнтгСнологичСского прогрСссирования заболСвания. Π­Ρ‚ΠΈ прСимущСства ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ костных мСтастатичСских ΠΎΡ‡Π°Π³ΠΎΠ² ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ связаны с нСпосрСдствСнным воздСйствиСм Π½Π° мСтастатичСскиС ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ€Π°ΠΊΠ° ΠΏΡ€Π΅Π΄ΡΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Π² костях ΠΈΠ»ΠΈ со спСцифичСскими ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌΠΈ Π½Π° костноС ΠΌΠΈΠΊΡ€ΠΎΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠ΅. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ эти Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹, ΠΌΡ‹ ΠΏΡ€ΠΎΠ²Π΅- Π»ΠΈ исслСдованиС in vitro, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ΅ Π½Π° ΠΎΡ†Π΅Π½ΠΊΡƒ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ дСйствия AA Π½Π° ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Π΅ остСокласты (ΠžΠšΠ›) / остСобласты (ΠžΠ‘Π›); in vivo ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ измСнСния ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² костного ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ°, Π‘-ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Ρ… Ρ‚Π΅Π»ΠΎΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ² ΠΊΠΎΠ»Π»Π°Π³Π΅Π½Π° 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ° (CTX, ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ костной Ρ€Π΅Π·ΠΎΡ€Π±Ρ†ΠΈΠΈ) ΠΈ Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΠΉ фосфатазы (Π©Π€) Ρƒ 49 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΌΠšΠ Π ΠŸΠ–, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… AA.Наши Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ AA ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ дСйствиС Π½Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠžΠšΠ›, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ ΠžΠšΠ›-ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½Ρ‹Ρ… Π³Π΅Π½ΠΎΠ² TRAP (тартратрСзистСнтная кислая фосфатаза), ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ катСпсина К ΠΈ матриксной ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π·Ρ‹-9. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, AA способствовал Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ΅ ΠžΠ‘Π› ΠΈ ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΡŽ костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, увСличивая ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ спСцифичных для ΠžΠ‘Π› Π³Π΅Π½ΠΎΠ² RUNX2 (Ρ„Π°ΠΊΡ‚ΠΎΡ€ транскрипции-2, содСрТащий Π΄ΠΎΠΌΠ΅Π½ Runt), ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π©Π€ ΠΈ ΠΎΡΡ‚Π΅ΠΎΠΊΠ°Π»ΡŒΡ†ΠΈΠ½Π°. Π’Π°ΠΊΠΆΠ΅ ΠΌΡ‹ наблюдали in vivo Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ сниТСниС уровня CTX Π² сывороткС ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ уровня Π©Π€ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… AA.Π­Ρ‚ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ Π½ΠΎΠ²Ρ‹ΠΉ биологичСский ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ дСйствия AA, состоящий Π² прямом анаболичСском ΠΈ Π°Π½Ρ‚ΠΈΡ€Π΅Π·ΠΎΡ€Π±Ρ‚ΠΈΠ²Π½ΠΎΠΌ влиянии Π½Π° ΠΊΠΎΡΡ‚Π½ΡƒΡŽ Ρ‚ΠΊΠ°Π½ΡŒ.ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°Π±ΠΈΡ€Π°Ρ‚Π΅Ρ€ΠΎΠ½Π° Π°Ρ†Π΅Ρ‚Π°Ρ‚Π° (АА) сопровоТдаСтся Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ выТиваСмости ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с мСтастатичСским кастрационно-рСзистСнтным Ρ€Π°ΠΊΠΎΠΌ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ (ΠΌΠšΠ Π ΠŸΠ–), Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚Π΄Π°Π»Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π΄ΠΎ развития рСнтгСнологичСского прогрСссирования заболСвания. Π­Ρ‚ΠΈ прСимущСства ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ костных мСтастатичСских ΠΎΡ‡Π°Π³ΠΎΠ² ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ связаны с нСпосрСдствСнным воздСйствиСм Π½Π° мСтастатичСскиС ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ€Π°ΠΊΠ° ΠΏΡ€Π΅Π΄ΡΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Π² костях ΠΈΠ»ΠΈ со спСцифичСскими ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌΠΈ Π½Π° костноС ΠΌΠΈΠΊΡ€ΠΎΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠ΅. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ эти Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹, ΠΌΡ‹ ΠΏΡ€ΠΎΠ²Π΅Π»ΠΈ исслСдованиС in vitro, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ΅ Π½Π° ΠΎΡ†Π΅Π½ΠΊΡƒ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ дСйствия AA Π½Π° ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Π΅ остСокласты (ΠžΠšΠ›) / остСобласты (ΠžΠ‘Π›); in vivo ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ измСнСния ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² костного ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ°, Π‘-ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Ρ… Ρ‚Π΅Π»ΠΎΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ² ΠΊΠΎΠ»Π»Π°Π³Π΅Π½Π° 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ° (CTX, ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ костной Ρ€Π΅Π·ΠΎΡ€Π±Ρ†ΠΈΠΈ) ΠΈ Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΠΉ фосфатазы (Π©Π€) Ρƒ 49 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΌΠšΠ Π ΠŸΠ–, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… AA.Наши Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ AA ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ дСйствиС Π½Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠžΠšΠ›, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ ΠžΠšΠ›-ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½Ρ‹Ρ… Π³Π΅Π½ΠΎΠ² TRAP (тартратрСзистСнтная кислая фосфатаза), ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ катСпсина К ΠΈ матриксной ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π·Ρ‹-9. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, AA способствовал Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ΅ ΠžΠ‘Π› ΠΈ ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΡŽ костной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, увСличивая ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ спСцифичных для ΠžΠ‘Π› Π³Π΅Π½ΠΎΠ² RUNX2 (Ρ„Π°ΠΊΡ‚ΠΎΡ€ транскрипции-2, содСрТащий Π΄ΠΎΠΌΠ΅Π½ Runt), ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π©Π€ ΠΈ ΠΎΡΡ‚Π΅ΠΎΠΊΠ°Π»ΡŒΡ†ΠΈΠ½Π°. Π’Π°ΠΊΠΆΠ΅ ΠΌΡ‹ наблюдали in vivo Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ сниТСниС уровня CTX Π² сывороткС ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ уровня Π©Π€ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… AA.Π­Ρ‚ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ Π½ΠΎΠ²Ρ‹ΠΉ биологичСский ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ дСйствия AA, состоящий Π² прямом анаболичСском ΠΈ Π°Π½Ρ‚ΠΈΡ€Π΅Π·ΠΎΡ€Π±Ρ‚ΠΈΠ²Π½ΠΎΠΌ влиянии Π½Π° ΠΊΠΎΡΡ‚Π½ΡƒΡŽ Ρ‚ΠΊΠ°Π½ΡŒ

    Cabozantinib targets bone microenvironment modulating human osteoclast and osteoblast functions

    Get PDF
    Cabozantinib, a c-MET and vascular endothelial growth factor receptor 2 inhibitor, demonstrated to prolong progression free survival and improve skeletal diseaserelated endpoints in castration-resistant prostate cancer and in metastatic renal carcinoma. Our purpose is to investigate the direct effect of cabozantinib on bone microenvironment using a total human model of primary osteoclasts and osteoblasts. Osteoclasts were differentiated from monocytes isolated from healthy donors; osteoblasts were derived from human mesenchymal stem cells obtained from bone fragments of orthopedic surgery patients. Osteoclast activity was evaluated by tartrate resistant acid phosphatase (TRAP) staining and bone resorption assays and osteoblast differentiation was detected by alkaline phosphatase and alizarin red staining. Our results show that non-cytotoxic doses of cabozantinib significantly inhibit osteoclast differentiation (p=0.0145) and bone resorption activity (p=0.0252). Moreover, cabozantinib down-modulates the expression of osteoclast marker genes, TRAP (p=0.006), CATHEPSIN K (p=0.004) and Receptor Activator of Nuclear Factor k B (RANK) (p=0.001). Cabozantinib treatment has no effect on osteoblast viability or differentiation, but increases osteoprotegerin mRNA (p=0.015) and protein levels (p=0.004) and down-modulates Receptor Activator of Nuclear Factor k B Ligand (RANKL) at both mRNA (p < 0.001) and protein levels (p=0.043). Direct cell-to-cell contact between cabozantinib pre-treated osteoblasts and untreated osteoclasts confirmed the indirect anti-resorptive effect of cabozantinib. We demonstrate that cabozantinib inhibits osteoclast functions "directly" and "indirectly" reducing the RANKL/osteoprotegerin ratio in osteoblasts

    Osteoblast Secretome Modulated by Abiraterone Treatment Affects Castration Resistant Prostate Cancer Cell Proliferation

    No full text
    Abiraterone is a selective inhibitor of androgen biosynthesis approved for the treatment of metastatic patients affected by castration-resistant or castration-sensitive prostate cancer. Intriguingly, clinical data revealed that abiraterone also delayed disease progression in bone improving bone-related endpoints. Our group has previously demonstrated in vitro a direct effect of abiraterone on osteoclast and osteoblast function suggesting its ability to modulate bone microenvironment. Here, we performed an extensive proteomic analysis to investigate how abiraterone influences osteoblast cell secretome and, consequently, osteoblast/prostate cancer cells interaction. A panel of 507 soluble molecules were analyzed in osteoblast conditioned media (OCM) obtained from osteoblast treated or not with abiraterone. Subsequently, OCM was added to prostate cancer cells to investigate its potential effect on prostate cancer cell proliferation and androgen receptor (AR) activation status. Out of 507 screened molecules, 39 of them were differentially expressed in OCM from osteoblasts treated with abiraterone (OCM ABI) compared to OCM obtained from untreated OBs (OCM CTRL). Pathway enrichment analysis revealed that abiraterone down-modulated the release of specific osteoblast soluble factors, positively associated with cell proliferation pathways (false discovery rate adjusted p-value = 0.0019). In vitro validation data showed that OCM ABI treatment significantly reduced cancer proliferation in C4-2B cells (p = 0.022), but not in AR- negative PC-3 cells. Moreover, we also found a reduction in AR activation in C4-2B cells (p = 0.017) confirming the &ldquo;indirect&rdquo; anti-tumor AR-dependent effect of abiraterone mediated by osteoblasts. This study provides the first evidence of an additional antitumor effect of abiraterone through the modulation of multiple osteoblast proliferative signals
    corecore