2 research outputs found

    Hydraulic and thermal impact modelling at the scale of the geothermal heating doublet in the Paris Basin, France

    No full text
    13 pagesInternational audienceThe Paris Basin is extensively developed for the geothermal district heating (GDH) of approximately 150 000 dwellings. As of late 2010, thirty four GDH systems apply the doublet concept in the Paris suburban area and mine the heat of the Dogger reservoir, a limestone formation of Mid-Jurassic age at depths ranging from 1500 to 2000 m. As the brine is fully reinjected, cold water bodies progressively invade the reservoir around injector wells inducing both thermal and hydraulic interactions at the doublet scale. The premature production well cooling and the sustainable development of the resource highlight two critical parameters, the thermal breakthrough time (tB) and the extent of the cooled fluid bubble(S) respectively. First, a set of benchtest simulations was launched to compare the sensitivities of tB and S parameters to selected reservoir conceptual model typologies. These simulations were applied on a GDH doublet undergoing a suspected thermal breakthrough. Five reservoir modelling teams validated their “in house” simulations by (i) checking an analytical (Gringarten-Sauty, 1979) solution, and (ii) testing three candidate reservoir structures on the doublet considered remotely located (i.e. not interfering with nearby exploitations) for a first step. The outcome resulted in a rewarding insight into the variability of simulation outputs. An additional segment will enable the actors to compare their modelling expertise on the same doublet considered in interaction with the other GDH operations located in its environment. Second, BRGM carried out a survey towards various rehabilitation schemes (a new doublet or a triplet) and their contribution toward sustainability standards. From a hypothetical, twenty five year life, doublet simulation, an initial hydraulic/temperature field was derived. Then, several new well locations were simulated and isotherms, alongside production well cooling kinetics, compared accordingly. A two-stage rehabilitation scheme, i.e. triplet then a new doublet, seems to reconcile the resource longevity and the economic demand. Further work is required to compare the different designs with a method integrating both the impact of the geothermal exploitation on the resource and the lifetime of the exploitation in a single mathematical factor

    Modélisations mécanique et hydraulique pour la compréhension des interactions fluide/roche en fracture : Mechanical and hydraulic modelling for the understanding of fluid/rock interactions in fracture

    No full text
    Les modèles hydraulique et mécanique mis en œuvre pour aider à la compréhension et à l'interprétation des essais de percolation réactive en fracture sont présentés. Ces modèles sont basés sur la construction d'un modèle géométrique à partir de données morphologiques de la fracture. Hydraulic and mechanical models implemented to improve the understanding of reactive percolation tests in a fracture are presented. Both models are based on the construction of a geometrical model built on the base of morphological data
    corecore