216 research outputs found

    Composite vortex model of the electrodynamics of high-TcT_c superconductor

    Full text link
    We propose a phenomenological model of vortex dynamics in which the vortex is taken as a composite object made of two components: the vortex current which is massless and driven by the Lorentz force, and the vortex core which is massive and driven by the Magnus force. By combining the characteristics of the Gittleman-Rosenblum model (Phys. Rev. Lett. {\bf 16}, 734 (1966)) and Hsu's theory of vortex dynamics (Physica {\bf C 213},305 (1993)), the model provides a good description of recent far infrared measurements of the magneto-conductivity tensor of superconducting YBa2_2Cu3_3O7δ_{7-\delta } films from 5 cm1^{-1} to 200 cm1^{-1}.Comment: LaTex file (12 pages) + 3 Postscript figures, uuencoded. More information on this paper, please check http://www.wam.umd.edu/~lihn/newmodel

    Depinning transition in type-II superconductors

    Full text link
    The surface impedance Z(f) of conventional isotropic materials has been carefully measured for frequencies f ranging from 1 kHz to 3 MHz, allowing a detailed investigation of the depinning transition. Our results exhibit the irrelevance of classical ideas to the dynamics of vortex pinning. We propose a new picture, where the linear ac response is entirely governed by disordered boundary conditions of a rough surface, whereas in the bulk vortices respond freely. The universal law for Z(f) thus predicted is in remarkable agreement with experiment, and tentatively applies to microwave data in YBaCuO films.Comment: 4 pages, 4 figures, 14 reference

    Critical State Flux Penetration and Linear Microwave Vortex Response in YBa_2Cu_3O_{7-x} Films

    Full text link
    The vortex contribution to the dc field (H) dependent microwave surface impedance Z_s = R_s+iX_s of YBa_2Cu_3O_{7-x} thin films was measured using suspended patterned resonators. Z_s(H) is shown to be a direct measure of the flux density B(H) enabling a very precise test of models of flux penetration. Three regimes of field-dependent behavior were observed: (1) Initial flux penetration occurs on very low field scales H_i(4.2K) 100Oe, (2) At moderate fields the flux penetration into the virgin state is in excellent agreement with calculations based upon the field-induced Bean critical state for thin film geometry, parametrized by a field scale H_s(4.2K) J_c*d 0.5T, (3) for very high fields H >>H_s, the flux density is uniform and the measurements enable direct determination of vortex parameters such as pinning force constants \alpha_p and vortex viscosity \eta. However hysteresis loops are in disagreement with the thin film Bean model, and instead are governed by the low field scale H_i, rather than by H_s. Geometric barriers are insufficient to account for the observed results.Comment: 20 pages, LaTeX type, Uses REVTeX style files, Submitted to Physical Review B, 600 dpi PostScript file with high resolution figures available at http://sagar.physics.neu.edu/preprints.htm

    The ac magnetic response of mesoscopic type II superconductors

    Full text link
    The response of mesoscopic superconductors to an ac magnetic field is numerically investigated on the basis of the time-dependent Ginzburg-Landau equations (TDGL). We study the dependence with frequency ω\omega and dc magnetic field HdcH_{dc} of the linear ac susceptibility χ(Hdc,ω)\chi(H_{dc}, \omega) in square samples with dimensions of the order of the London penetration depth. At Hdc=0H_{dc}=0 the behavior of χ\chi as a function of ω\omega agrees very well with the two fluid model, and the imaginary part of the ac susceptibility, χ"(ω)\chi"(\omega), shows a dissipative a maximum at the frequency νo=c2/(4πσλ2)\nu_o=c^2/(4\pi \sigma\lambda^2). In the presence of a magnetic field a second dissipation maximum appears at a frequency ωpν0\omega_p\ll\nu_0. The most interesting behavior of mesoscopic superconductors can be observed in the χ(Hdc)\chi(H_{dc}) curves obtained at a fixed frequency. At a fixed number of vortices, χ"(Hdc)\chi"(H_{dc}) continuously increases with increasing HdcH_{dc}. We observe that the dissipation reaches a maximum for magnetic fields right below the vortex penetration fields. Then, after each vortex penetration event, there is a sudden suppression of the ac losses, showing discontinuities in χ"(Hdc)\chi"(H_{dc}) at several values of HdcH_{dc}. We show that these discontinuities are typical of the mesoscopic scale and disappear in macroscopic samples, which have a continuos behavior of χ(Hdc)\chi(H_{dc}). We argue that these discontinuities in χ(Hdc)\chi(H_{dc}) are due to the effect of {\it nascent vortices} which cause a large variation of the amplitude of the order parameter near the surface before the entrance of vortices.Comment: 12 pages, 9 figures, RevTex

    The electronic state of vortices in YBa2Cu3Oy investigated by complex surface impedance measurement

    Full text link
    The electromagnetic response to microwaves in the mixed state of YBa2Cu3Oy(YBCO) was measured in order to investigate the electronic state inside and outside the vortex core. The magnetic-field dependence of the complex surface impedance at low temperatures was in good agreement with a general vortex dynamics description assuming that the field-independent viscous damping force and the linear restoring force were acting on the vortices. In other words, both real and imaginary parts of the complex resistivity, \rho_1, and \rho_2, were linear in B. This is explained by theories for d-wave superconductors. Using analysis based on the Coffey-Clem description of the complex penetration depth, we estimated that the vortex viscosity \eta at 10 K was (4 \sim 5) \times 10^{-7} Ns/m^2. This value corresponds to \omega_0 \tau \sim 0.3 - 0.5, where \omega_0 and \tau are the minimal gap frequency and the quasiparticle lifetime in the vortex core, respectively. These results suggest that the vortex core in YBCO is in the moderately clean regime. Investigation of the moderately clean vortex core in high-temperature superconductors is significant because physically new effects may be expected due to d-wave characteristics and to the quantum nature of cuprate superconductors. The behavior of Z_s as a function of B across the first order transition (FOT) of the vortex lattice was also investigated. Unlike Bi2Sr2CaCu2Oy (BSCCO), no distinct anomaly was observed around the FOT in YBCO. Our results suggest that the rapid increase of X_s due to the change of superfluid density at the FOT would be observed only in highly anisotropic two-dimensional vortex systems like BSCCO. We discuss these results in terms of the difference of the interlayer coupling and the energy scale between the two materials.Comment: 10 pages, 6 figures, to be published in Phys. Rev. B, one reference adde

    Measurement of the Far Infrared Magneto-Conductivity Tensor of Superconducting YBa2_2Cu3_3O7δ_{7-\delta } Thin Films

    Full text link
    We report measurements of the far infrared transmission of superconducting YBa2_2Cu3_3O7δ_{7-\delta } thin films from 5 cm1^{-1} to 200 cm1^{-1} in fields up to 14TT. A Kramers-Kronig analysis of the magneto-transmission spectrum yields the magneto-conductivity tensor. The result shows that the magneto-conductivity of YBa2_2Cu3_3O7δ_{7-\delta } is dominated by three terms: a London term, a low frequency Lorentzian (ω1\omega _1\approx 3 cm1% ^{-1}) of width Γ1=\Gamma _1= 10 cm1^{-1} and a finite frequency Lorentzian of width Γ2=\Gamma _2= 17 cm1^{-1} at ω2=\omega _2= 24 cm1^{-1} in the hole cyclotron resonance active mode of circular polarization.\\Comment: Revised LaTex file (12 pages) + 4 Postscript figures, uuencoded. In response to referees' comments, we refined the paper a lot; we encourage you to download this revised versio

    Electrodynamics of a Clean Vortex Lattice

    Full text link
    We report on a microscopic evaluation of electrodynamic response for the vortex lattice state of a model s-wave superconductor. Our calculation accounts self-consistently for both quasiparticle and order parameter response and establishes the collective nature of linear response in the clean limit. We discuss the effects of homogeneous and inhomogeneous pinning on the optical conductivity and the penetration depth, and comment on the relationship between macroscopic and local penetration depths. We find unexpected relationships between pinning arrangements and conductivity due to the strongly non-local response.Comment: 4 pages, 2 figure

    Crossover from Kondo assisted suppression to co-tunneling enhancement of tunneling magnetoresistance via ferromagnetic nanodots in MgO tunnel barriers

    Full text link
    Recently, it has been shown that magnetic tunnel junctions with thin MgO tunnel barriers exhibit extraordinarily high tunneling magnetoresistance (TMR) values at room temperature1, 2. However, the physics of spin dependent tunneling through MgO barriers is only beginning to be unravelled. Using planar magnetic tunnel junctions in which ultra-thin layers of magnetic metals are deposited in the middle of a MgO tunnel barrier here we demonstrate that the TMR is strongly modified when these layers are discontinuous and composed of small pancake shaped nanodots. At low temperatures, in the Coulomb blockade regime, for layers less than ~1 nm thick, the conductance of the junction is increased at low bias consistent with Kondo assisted tunneling. In the same regime we observe a suppression of the TMR. For slightly thicker layers, and correspondingly larger nanodots, the TMR is enhanced at low bias, consistent with co-tunneling.Comment: Nano Letters (in press

    The role of the alloy structure in the magnetic behavior of granular systems

    Get PDF
    The effect of grain size, easy magnetization axis and anisotropy constant distributions in the irreversible magnetic behavior of granular alloys is considered. A simulated granular alloy is used to provide a realistic grain structure for the Monte Carlo simulation of the ZFC-FC curves. The effect of annealing and external field is also studied. The simulation curves are in good agreement with the FC and ZFC magnetization curves measured on melt spun Cu-Co ribbons.Comment: 13 pages, 10 figures, submitted to PR

    Microscopic theory of vortex dynamics in homogeneous superconductors

    Full text link
    Vortex dynamics in fermionic superfluids is carefully considered from the microscopic point of view. Finite temperatures, as well as impurities, are explicitly incorporated. To enable readers understand the physical implications, macroscopic demonstrations based on thermodynamics and fluctuations- dissipation theorems are constructed. For the first time a clear summary and a critical review of previous results are given.Comment: Presentations are made more straightforward. A detailed presentation that why the vortex friction is finite when the geometric phase exists, as required by referees, though I think it is obviou
    corecore