43 research outputs found

    Complement System Inhibition Modulates the Pro-Inflammatory Effects of a Snake Venom Metalloproteinase

    Get PDF
    Envenomation by Bothrops snakes causes prominent local effects, including pain, oedema, local bleeding, blistering and necrosis, and systemic manifestations, such as hemorrhage, hypotension, shock and acute renal failure. These snake venoms are able to activate the complement system and induce the generation of anaphylatoxins, whose mechanisms include the direct cleavage of complement components by snake venom metalloproteinases and serine proteinases present in the venoms. A metalloproteinase able to activate the three complement pathways and generate active anaphylatoxins, named C-SVMP, was purified from the venom of Bothrops pirajai. Considering the inflammatory nature of Bothrops venoms and the complement-activation property of C-SVMP, in the present work, we investigated the inflammatory effects of C-SVMP in a human whole blood model. The role of the complement system in the inflammatory process and its modulation by the use of compstatin were also investigated. C-SVMP was able to activate the complement system in the whole blood model, generating C3a/C3a desArg, C5a/C5a desArg and SC5b-9. This protein was able to promote an increase in the expression of CD11b, CD14, C3aR, C5aR1, TLR2, and TLR4 markers in leukocytes. Inhibition of component C3 by compstatin significantly reduced the production of anaphylatoxins and the Terminal Complement Complex (TCC) in blood plasma treated with the toxin, as well as the expression of CD11b, C3aR, and C5aR on leukocytes. C-SVMP was able to induce increased production of the cytokines IL-1β and IL-6 and the chemokines CXCL8/IL-8, CCL2/MCP-1, and CXCL9/MIG in the human whole blood model. The addition of compstatin to the reactions caused a significant reduction in the production of IL-1β, CXCL8/IL-8, and CCL2/MCP-1 in cells treated with C-SVMP. We therefore conclude that C-SVMP is able to activate the complement system, which leads to an increase in the inflammatory process. The data obtained with the use of compstatin indicate that complement inhibition may significantly control the inflammatory process initiated by Bothrops snake venom toxins

    Micrurus snake venoms activate human complement system and generate anaphylatoxins

    Get PDF
    Background The genus Micrurus, coral snakes (Serpentes, Elapidae), comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s) present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process

    Premolis semirufa (Walker, 1856) Envenomation, Disease Affecting Rubber Tappers of the Amazon: Searching for Caterpillar-Bristles Toxic Components

    Get PDF
    Pararama, the popular name of the larval form of the moth Premolis semirufa inhabits rubber plantations in the Amazon region and the accidental contact of the skin with the caterpillar's bristles or cocoons results in immediate and intense heat, pain, edema, and itching. In many cases a chronic inflammatory reaction with immobilization of the joints occurs. The current study has evaluated the biological and immunochemical characteristics of the Pararama caterpillar bristles extract. Electrophoretic analysis showed the presence of several components, including a very intense 82 kDa band. This latter component was endowed with intense gelatinolytic activity, as observed in zymography assays. Further analysis revealed that the extract also contained hyaluronidase activity but is devoid of phospholipase A2 activity. In vivo assays, using mice, showed that the extract was not lethal, but caused significant edema and induced intense infiltration of inflammatory cells to the envenomation site. The extract also induced high specific antibody titers, but no autoantibodies were detected. The data obtained, so far, demonstrate the existence of a mixture of different enzymes in the bristles of Premolis semirufa caterpillar, which can act together in the generation and development of the clinical manifestations of the Pararama envenomation

    Characterization of a gene coding for the complement system component FB from loxosceles laeta spider venom glands

    Get PDF
    The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae

    Complement System Inhibition Modulates the Inflammation Induced by the Venom of Premolis semirufa, an Amazon Rainforest Moth Caterpillar

    No full text
    The caterpillar of the Premolis semirufa moth, commonly called Pararama, is found in the Brazilian Amazon region. Contact with the hairs can cause a chronic inflammatory reaction, termed “pararamosis”. To date, there is still no specific treatment for pararamosis. In this study, we used a whole human blood model to evaluate the involvement of the complement in the proinflammatory effects of P. semirufa hair extract, as well as the anti-inflammatory potential of complement inhibitors in this process. After treatment of blood samples with the P. semirufa hair extract, there was a significant increase in the generation of soluble terminal complement complex (sTCC) and anaphylatoxins (C3a, C4a, and C5a), as well as the production of the cytokines TNF-α and IL-17 and the chemokines IL-8, RANTES, MIG, MCP-1, and IP-10. The inhibition of C3 with compstatin significantly decreased IL-17, IL-8, RANTES, and MCP-1 production. However, the use of the C5aR1 antagonist PMX205 promoted a reduction in the production of IL-8 and RANTES. Moreover, compstatin decreased CD11b, C5aR1, and TLR2 expression induced by P. semirufa hair extract in granulocytes and CD11b, TLR4, and TLR2 in monocytes. When we incubated vascular endothelial cells with extract-treated human plasma, there was an increase in IL-8 and MCP-1 production, and compstatin was able to decrease the production of these chemokines. C5aR1 antagonism also decreased the production of MCP-1 in endothelial cells. Thus, these results indicate that the extract of the Pararama bristles activates the complement system and that this action contributes to the production of cytokines and chemokines, modulation of the expression of surface markers in leukocytes, and activation of endothelial cells

    P-MAPA, a Fungi-Derived Immunomodulatory Compound, Induces a Proinflammatory Response in a Human Whole Blood Model

    No full text
    P-MAPA is a complex compound, derived from Aspergillus oryzae cultures, that has shown immunomodulatory properties in infection and cancer animal models. Despite promising results in these models, the mechanisms of cellular activation by P-MAPA, suggested to be Toll-like receptor- (TLR-) dependent, and its effect on human immune cells, remain unclear. Using an ex vivo model of human whole blood, the effects of P-MAPA on complement system activation, production of cytokines, and the expression of complement receptors (CD11b, C5aR, and C3aR), TLR2, TLR4, and the coreceptor CD14 were analyzed in neutrophils and monocytes. P-MAPA induced complement activation in human blood, detected by increased levels of C3a, C5a, and SC5b-9 in plasma. As a consequence, CD11b expression increased and C5aR decreased upon activation, while C3aR expression remained unchanged in leukocytes. TLR2 and TLR4 expressions were not modulated by P-MAPA treatment on neutrophils, but TLR4 expression was reduced in monocytes, while CD14 expression increased in both cell types. P-MAPA also induced the production of TNF-α, IL-8, and IL-12 and oxidative burst, measured by peroxynitrite levels, in human leukocytes. Complement inhibition with compstatin showed that P-MAPA-induced complement activation drives modulation of C5aR, but not of CD11b, suggesting that P-MAPA acts through both complement-dependent and complement-independent mechanisms. Compstatin also significantly reduced the peroxynitrite generation. Altogether, our results show that P-MAPA induced proinflammatory response in human leukocytes, which is partially mediated by complement activation. Our data contribute to elucidate the complement-dependent and complement-independent mechanisms of P-MAPA, which ultimately result in immune cell activation and in its immunomodulatory properties in infection and cancer animal models

    Venom from Bothrops lanceolatus, a Snake Species Native to Martinique, Potently Activates the Complement System

    Get PDF
    Bothrops lanceolatus snake venom causes systemic thrombotic syndrome but also local inflammation involving extensive oedema, pain, and haemorrhage. Systemic thrombotic syndrome may lead to fatal pulmonary embolism and myocardial and cerebral infarction. Here, we investigated the ability of B. lanceolatus venom to activate the Complement system (C) in order to improve the understanding of venom-induced local inflammation. Data presented show that B. lanceolatus venom is able to activate all C-pathways. In human serum, the venom strongly induced the generation of anaphylatoxins, such as C5a and C4a, and the Terminal Complement complex. The venom also induced cleavage of purified human components C3, C4, and C5, with the production of biologically active C5a. Furthermore, the venom enzymatically inactivated the soluble C-regulator and the C1-inhibitor (C1-INH), and significantly increased the expression of bound C-regulators, such as MCP and CD59, on the endothelial cell membrane. Our observations that B. lanceolatus venom activates the three Complement activation pathways, resulting in anaphylatoxins generation, may suggest that this could play an important role in local inflammatory reaction and systemic thrombosis caused by the venom. Inactivation of C1-INH, which is also an important inhibitor of several coagulation proteins, may also contribute to inflammation and thrombosis. Thus, further in vivo studies may support the idea that therapeutic management of systemic B. lanceolatus envenomation could include the use of Complement inhibitors as adjunct therapy

    Leptospira interrogans outer membrane protein LipL21 is a potent inhibitor of neutrophil myeloperoxidase

    No full text
    Leptospirosis is a widespread zoonotic and neglected infectious disease of human and veterinary concern that is caused by pathogenic Leptospira species. After entrance in the host, pathogenic leptospires evade the host natural defense mechanisms in order to propagate and disseminate to multiple organs. Myeloperoxidase is an enzyme stored in neutrophils azurophilic granules, and is released upon neutrophil activation to produce mainly hypochlorous acid, a strong oxidant and potent antimicrobial agent. In the present investigation, we studied the modulation of myeloperoxidase activity by L. interrogans serovar Copenhageni. We show that leptospires and their culture supernatants are able to inhibit both peroxidase and chlorination activities of myeloperoxidase, without interfering with neutrophil degranulation. By leptospiral outer membrane protein extraction and fractionation, we identified the proteins LipL21 and LipL45 as myeloperoxidase inhibitors, constituting new Leptospira virulence factors. Accordingly, we propose a function for the protein LipL21, one of the most expressed leptospiral outer membrane proteins. Our results show a novel innate immune evasion mechanism by which leptospires interfere with the host response in order to cope with the host oxidative stress and efficiently achieve dissemination and colonization
    corecore