5 research outputs found

    2D/3D-QSAR Model Development Based on a Quinoline Pharmacophoric Core for the Inhibition of <i>Plasmodium falciparum</i>: An In Silico Approach with Experimental Validation

    No full text
    Malaria is an infectious disease caused by Plasmodium spp. parasites, with widespread drug resistance to most antimalarial drugs. We report the development of two 3D-QSAR models based on comparative molecular field analysis (CoMFA), comparative molecular similarity index analysis (CoMSIA), and a 2D-QSAR model, using a database of 349 compounds with activity against the P. falciparum 3D7 strain. The models were validated internally and externally, complying with all metrics (q2 > 0.5, r2test > 0.6, r2m > 0.5, etc.). The final models have shown the following statistical values: r2test CoMFA = 0.878, r2test CoMSIA = 0.876, and r2test 2D-QSAR = 0.845. The models were experimentally tested through the synthesis and biological evaluation of ten quinoline derivatives against P. falciparum 3D7. The CoMSIA and 2D-QSAR models outperformed CoMFA in terms of better predictive capacity (MAE = 0.7006, 0.4849, and 1.2803, respectively). The physicochemical and pharmacokinetic properties of three selected quinoline derivatives were similar to chloroquine. Finally, the compounds showed low cytotoxicity (IC50 > 100 µM) on human HepG2 cells. These results suggest that the QSAR models accurately predict the toxicological profile, correlating well with experimental in vivo data
    corecore