44 research outputs found
Skeletal muscle metabolic responses to physical activity are muscle type specific in a rat model of chronic kidney disease
Chronic kidney disease (CKD) leads to musculoskeletal impairments that are impacted by muscle metabolism. We tested the hypothesis that 10-weeks of voluntary wheel running can improve skeletal muscle mitochondria activity and function in a rat model of CKD. Groups included (n = 12–14/group): (1) normal littermates (NL); (2) CKD, and; (3) CKD-10 weeks of voluntary wheel running (CKD-W). At 35-weeks old the following assays were performed in the soleus and extensor digitorum longus (EDL): targeted metabolomics, mitochondrial respiration, and protein expression. Amino acid-related compounds were reduced in CKD muscle and not restored by physical activity. Mitochondrial respiration in the CKD soleus was increased compared to NL, but not impacted by physical activity. The EDL respiration was not different between NL and CKD, but increased in CKD-wheel rats compared to CKD and NL groups. Our results demonstrate that the soleus may be more susceptible to CKD-induced changes of mitochondrial complex content and respiration, while in the EDL, these alterations were in response the physiological load induced by mild physical activity. Future studies should focus on therapies to improve mitochondrial function in both types of muscle to determine if such treatments can improve the ability to adapt to physical activity in CKD
Modular Architecture and Unique Teichoic Acid Recognition Features of Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis
The human pathogen Streptococcus pneumoniae is decorated with a special class of surface-proteins known as choline-binding proteins (CBPs) attached to phosphorylcholine (PCho) moieties from cell-wall teichoic acids. By a combination of X-ray crystallography, NMR, molecular dynamics techniques and in vivo virulence and phagocytosis studies, we provide structural information of choline-binding protein L (CbpL) and demonstrate its impact on pneumococcal pathogenesis and immune evasion. CbpL is a very elongated three-module protein composed of (i) an Excalibur Ca 2+ -binding domain -reported in this work for the very first time-, (ii) an unprecedented anchorage module showing alternate disposition of canonical and non-canonical choline-binding sites that allows vine-like binding of fully-PCho-substituted teichoic acids (with two choline moieties per unit), and (iii) a Ltp-Lipoprotein domain. Our structural and infection assays indicate an important role of the whole multimodular protein allowing both to locate CbpL at specific places on the cell wall and to interact with host components in order to facilitate pneumococcal lung infection and transmigration from nasopharynx to the lungs and blood. CbpL implication in both resistance against killing by phagocytes and pneumococcal pathogenesis further postulate this surface-protein as relevant among the pathogenic arsenal of the pneumococcus.We gratefully acknowledge Karsta Barnekow and Kristine Sievert-Giermann, for technical assistance and Lothar
Petruschka for in silico analysis (all Dept. of Genetics, University of Greifswald). We are further grateful to the staff
from SLS synchrotron beamline for help in data collection. This work was supported by grants from the Deutsche
Forschungsgemeinschaft DFG GRK 1870 (to SH) and the Spanish Ministry of Economy and Competitiveness
(BFU2014-59389-P to JAH, CTQ2014-52633-P to MB and SAF2012-39760-C02-02 to FG) and S2010/BMD-
2457 (Community of Madrid to JAH and FG).Peer Reviewe
Total synthesis of dansylated Park's nucleotide for high-throughput MraY assays.
The membrane protein translocase I (MraY) is a key enzyme in bacterial peptidoglycan biosynthesis. It is therefore frequently discussed as a target for the development of novel antibiotics. The screening of compound libraries for the identification of MraY inhibitors is enabled by an established fluorescence-based MraY assay. However, this assay requires a dansylated derivative of the bacterial biosynthetic intermediate Park's nucleotide as the MraY substrate. Isolation of Park's nucleotide from bacteria and subsequent dansylation only furnishes limited amounts of this substrate, thus hampering the high-throughput screening for MraY inhibitors. Accordingly, the efficient provision of dansylated Park's nucleotide is a major bottleneck in the exploration of this promising drug target. In this work, we present the first total synthesis of dansylated Park's nucleotide, affording an unprecedented amount of the target compound for high-throughput MraY assays
Specific and spatial labeling of choline-containing teichoic acids in Streptococcus pneumoniae by click chemistry
International audienc