837 research outputs found

    Circuit QED and engineering charge based superconducting qubits

    Full text link
    The last two decades have seen tremendous advances in our ability to generate and manipulate quantum coherence in mesoscopic superconducting circuits. These advances have opened up the study of quantum optics of microwave photons in superconducting circuits as well as providing important hardware for the manipulation of quantum information. Focusing primarily on charge-based qubits, we provide a brief overview of these developments and discuss the present state of the art. We also survey the remarkable progress that has been made in realizing circuit quantum electrodynamics (QED) in which superconducting artificial atoms are strongly coupled to individual microwave photons.Comment: Proceedings of Nobel Symposium 141: Qubits for Future Quantum Informatio

    The plasma picture of the fractional quantum Hall effect with internal SU(K) symmetries

    Full text link
    We consider trial wavefunctions exhibiting SU(K) symmetry which may be well-suited to grasp the physics of the fractional quantum Hall effect with internal degrees of freedom. Systems of relevance may be either spin-unpolarized states (K=2), semiconductors bilayers (K=2,4) or graphene (K=4). We find that some introduced states are unstable, undergoing phase separation or phase transition. This allows us to strongly reduce the set of candidate wavefunctions eligible for a particular filling factor. The stability criteria are obtained with the help of Laughlin's plasma analogy, which we systematically generalize to the multicomponent SU(K) case. The validity of these criteria are corroborated by exact-diagonalization studies, for SU(2) and SU(4). Furthermore, we study the pair-correlation functions of the ground state and elementary charged excitations within the multicomponent plasma picture.Comment: 13 pages, 7 figures; reference added, accepted for publication in PR

    Exact Results for 1D Kondo Lattice from Bosonization

    Full text link
    We find a solvable limit to the problem of the 1D electron gas interacting with a lattice of Kondo scattering centers. In this limit, we present exact results for the problems of incommensurate filling, commensurate filling, impurity vacancy states, and the commensurate-incommensurate transition.Comment: 4 pages, two columns, Latex fil

    Meron excitations in the nu =1 quantum Hall bilayer and the plasma analogy

    Full text link
    We study meron quasiparticle excitations in the \nu = 1 quantum Hall bilayer. Considering the well known single meron state, we introduce its effective form, valid in the longdistance limit. That enables us to propose two (and more) meron states in the same limit. Further, establishing a plasma analogy of the (111) ground state, we find the impurities that play the role of merons and derive meron charge distributions. Using the introduced meron constructions in generalized (mixed) ground states and corresponding plasmas for arbitrary distance between the layers, we calculate the interaction between the construction implied impurities. We also find a correspondence between the impurity interactions and meron interactions. This suggests a possible explanation of the deconfinement of the merons recently observed in the experiments.Comment: 5 pages, 3 figure

    Theory of preparation and relaxation of a p-orbital atomic Mott insulator

    Full text link
    We develop a theoretical framework to understand the preparation and relaxation of a metastable Mott insulator state within the first excited band of a 1D optical lattice. The state is loaded by "lifting" atoms from the ground to the first excited band by means of a stimulated Raman transition. We determine the effect of pulse duration on the accuracy of the state preparation for the case of a Gaussian pulse shape. Relaxation of the prepared state occurs in two major stages: double-occupied sites occurring due to quantum fluctuations initially lead to interband transitions followed by a spreading of particles in the trap and thermalization. We find the characteristic relaxation times at the earliest stage and at asymptotically long times approaching equilibrium. Our theory is applicable to recent experiments performed with 1D optical lattices [T. M\"uller, S. F\"olling, A. Widera, and I. Bloch, Phys. Rev. Lett. \textbf{99}, 200405 (2007)].Comment: 27 pages, 23 figures: Edited figures, added reference

    Hysteresis in the quantum Hall regimes in electron double quantum well structures

    Full text link
    We present in this paper experimental results on the transport hysteresis in electron double quantum well structures. Exploring the measurement technique of fixing the magnetic field and sweeping a front gate voltage (Vg), we are able to study the hysteresis by varying the top layer Landau level fillings while maintaining a relatively constant filling factor in the bottom layer, allowing us to tackle the question of the sign of Rxx(up)-Rxx(down), where Rxx(up) is the magnetoresistance when Vg is swept up and Rxx(down) when Vg swept down. Furthermore, we observe that hysteresis is generally stronger in the even integer quantum Hall effect (IQHE) regime than in the odd-IQHE regime. This, we argue, is due to a larger energy gap for an even-IQHE state, determined by the Landau level separation, than that for an odd-IQHE state, determined by the Zeeman splitting

    Absence of Domain Wall Roughening in a Transverse Field Ising Model with Long-Range Interactions

    Full text link
    We investigate roughening transitions in the context of transverse-field Ising models. As a modification of the transverse Ising model with short range interactions, which has been shown to exhibit domain wall roughening, we have looked into the possibility of a roughening transition for the case of long-range interactions, since such a system is physically realized in the insulator LiHoF4. The combination of strong Ising anisotropy and long-range forces lead naturally to the formation of domain walls but we find that the long-range forces destroy the roughening transition.Comment: 7 pages, 5 figures, revtex
    corecore