10 research outputs found

    Presentations: Yale Initiatives

    Get PDF

    Circuit QED

    No full text

    Response to Keynote and Q&A

    No full text

    High-resolution NMR characterization of a spider-silk mimetic composed of 15 tandem repeats and a CRGD motif

    No full text
    Multidimensional solution NMR spectroscopic techniques have been used to obtain atomic level information about a recombinant spider silk construct in hexafluoro-isopropanol (HFIP). The synthetic 49 kDa silk-like protein mimics authentic silk from Nephila clavipes, with the inclusion of an extracellular matrix recognition motif. 2D 1H-15N HSQC NMR spectroscopy reveals 33 cross peaks, which were assigned to amino acid residues in the semicrystalline repeat units. Signals from the amorphous segments in the primary sequence were weak and broad, suggesting that this region is highly dynamic and undergoing conformational exchange. An analysis of the deviations of the 13Cα, 13Cβ, and 13CO chemical shifts relative to the expected random coil values reveals two highly α-helical regions from amino acid 12–19 and 26–32, which comprise the polyalanine track and a GGLGSQ sequence. This finding is further supported by φ-value analysis and sequential and medium-range NOE interactions. Pulsed field gradient NMR measurements indicate that the topology of the silk mimetic in HFIP is nonglobular. Moreover, the 3D 15N-NOESY HSQC spectrum exhibits few long-range NOEs. Similar spectral features have been observed for repeat modules in other polypeptides and are characteristic of an elongated conformation. The results provide a residue-specific description of a silk sequence in nonaqueous solution and may be insightful for understanding the fold and topology of highly concentrated, stable silk before spinning. Additionally, the insights obtained may find application in future design and large-scale production and storage of synthetic silks in organic solvents

    Backaction effects of a SSET measuring a qubit spectroscopy and ground State measurement

    No full text
    We investigate the backaction of superconducting single-electron transistor (SSET) continuously measuring a Cooper-pair box. Due to the minimized backaction of the SSET, we observe a 2e periodic Coulomb staircase according to the two-level system Hamiltonian of the Cooper-pair box. We demonstrate that we can control the quantum broadening of the ground state in-situ. We perform spectroscopy measurements and demonstrate that we have full control over the Cooper-pair box Hamiltonian. The ability to reduce the backaction is a necessary condition to use the SSET as a quantum state readout for the CPB as a qubit

    Nonelective coronary artery bypass graft outcomes are adversely impacted by Coronavirus disease 2019 infection, but not altered processes of care: A National COVID Cohort Collaborative and National Surgery Quality Improvement Program analysisCentral MessagePerspective

    No full text
    Objective: The effects of Coronavirus disease 2019 (COVID-19) infection and altered processes of care on nonelective coronary artery bypass grafting (CABG) outcomes remain unknown. We hypothesized that patients with COVID-19 infection would have longer hospital lengths of stay and greater mortality compared with COVID-negative patients, but that these outcomes would not differ between COVID-negative and pre-COVID controls. Methods: The National COVID Cohort Collaborative 2020-2022 was queried for adult patients undergoing CABG. Patients were divided into COVID-negative, COVID-active, and COVID-convalescent groups. Pre-COVID control patients were drawn from the National Surgical Quality Improvement Program database. Adjusted analysis of the 3 COVID groups was performed via generalized linear models. Results: A total of 17,293 patients underwent nonelective CABG, including 16,252 COVID-negative, 127 COVID-active, 367 COVID-convalescent, and 2254 pre-COVID patients. Compared to pre-COVID patients, COVID-negative patients had no difference in mortality, whereas COVID-active patients experienced increased mortality. Mortality and pneumonia were higher in COVID-active patients compared to COVID-negative and COVID-convalescent patients. Adjusted analysis demonstrated that COVID-active patients had higher in-hospital mortality, 30- and 90-day mortality, and pneumonia compared to COVID-negative patients. COVID-convalescent patients had a shorter length of stay but a higher rate of renal impairment. Conclusions: Traditional care processes were altered during the COVID-19 pandemic. Our data show that nonelective CABG in patients with active COVID-19 is associated with significantly increased rates of mortality and pneumonia. The equivalent mortality in COVID-negative and pre-COVID patients suggests that pandemic-associated changes in processes of care did not impact CABG outcomes. Additional research into optimal timing of CABG after COVID infection is warranted
    corecore