967 research outputs found

    Community Structure in Time-Dependent, Multiscale, and Multiplex Networks

    Full text link
    Network science is an interdisciplinary endeavor, with methods and applications drawn from across the natural, social, and information sciences. A prominent problem in network science is the algorithmic detection of tightly-connected groups of nodes known as communities. We developed a generalized framework of network quality functions that allowed us to study the community structure of arbitrary multislice networks, which are combinations of individual networks coupled through links that connect each node in one network slice to itself in other slices. This framework allows one to study community structure in a very general setting encompassing networks that evolve over time, have multiple types of links (multiplexity), and have multiple scales.Comment: 31 pages, 3 figures, 1 table. Includes main text and supporting material. This is the accepted version of the manuscript (the definitive version appeared in Science), with typographical corrections included her

    Evidential Communities for Complex Networks

    Get PDF
    Community detection is of great importance for understand-ing graph structure in social networks. The communities in real-world networks are often overlapped, i.e. some nodes may be a member of multiple clusters. How to uncover the overlapping communities/clusters in a complex network is a general problem in data mining of network data sets. In this paper, a novel algorithm to identify overlapping communi-ties in complex networks by a combination of an evidential modularity function, a spectral mapping method and evidential c-means clustering is devised. Experimental results indicate that this detection approach can take advantage of the theory of belief functions, and preforms good both at detecting community structure and determining the appropri-ate number of clusters. Moreover, the credal partition obtained by the proposed method could give us a deeper insight into the graph structure

    Redox kinetics of the amyloid-β-Cu complex and its biological implications

    Get PDF
    The ability of the amyloid-β peptide to bind to redox active metals and act as a source of radical damage in Alzheimer’s disease has been largely accepted as contributing to the disease’s pathogenesis. However, a kinetic understanding of the molecular mechanism, which underpins this radical generation, has yet to be reported. Here we use a sensitive fluorescence approach, which reports on the oxidation state of the metal bound to the amyloid-β peptide and can therefore shed light on the redox kinetics. We confirm that the redox goes via a low populated, reactive intermediate and that the reaction proceeds via the Component I coordination environment rather than Component II. We also show that while the reduction step readily occurs (on the 10 ms time scale) it is the oxidation step that is rate-limiting for redox cycling

    Distance, dissimilarity index, and network community structure

    Full text link
    We address the question of finding the community structure of a complex network. In an earlier effort [H. Zhou, {\em Phys. Rev. E} (2003)], the concept of network random walking is introduced and a distance measure defined. Here we calculate, based on this distance measure, the dissimilarity index between nearest-neighboring vertices of a network and design an algorithm to partition these vertices into communities that are hierarchically organized. Each community is characterized by an upper and a lower dissimilarity threshold. The algorithm is applied to several artificial and real-world networks, and excellent results are obtained. In the case of artificially generated random modular networks, this method outperforms the algorithm based on the concept of edge betweenness centrality. For yeast's protein-protein interaction network, we are able to identify many clusters that have well defined biological functions.Comment: 10 pages, 7 figures, REVTeX4 forma

    A Simple Model of Epidemics with Pathogen Mutation

    Full text link
    We study how the interplay between the memory immune response and pathogen mutation affects epidemic dynamics in two related models. The first explicitly models pathogen mutation and individual memory immune responses, with contacted individuals becoming infected only if they are exposed to strains that are significantly different from other strains in their memory repertoire. The second model is a reduction of the first to a system of difference equations. In this case, individuals spend a fixed amount of time in a generalized immune class. In both models, we observe four fundamentally different types of behavior, depending on parameters: (1) pathogen extinction due to lack of contact between individuals, (2) endemic infection (3) periodic epidemic outbreaks, and (4) one or more outbreaks followed by extinction of the epidemic due to extremely low minima in the oscillations. We analyze both models to determine the location of each transition. Our main result is that pathogens in highly connected populations must mutate rapidly in order to remain viable.Comment: 9 pages, 11 figure

    Stochastic blockmodels with growing number of classes

    Full text link
    We present asymptotic and finite-sample results on the use of stochastic blockmodels for the analysis of network data. We show that the fraction of misclassified network nodes converges in probability to zero under maximum likelihood fitting when the number of classes is allowed to grow as the root of the network size and the average network degree grows at least poly-logarithmically in this size. We also establish finite-sample confidence bounds on maximum-likelihood blockmodel parameter estimates from data comprising independent Bernoulli random variates; these results hold uniformly over class assignment. We provide simulations verifying the conditions sufficient for our results, and conclude by fitting a logit parameterization of a stochastic blockmodel with covariates to a network data example comprising a collection of Facebook profiles, resulting in block estimates that reveal residual structure.Comment: 12 pages, 3 figures; revised versio

    Do logarithmic proximity measures outperform plain ones in graph clustering?

    Full text link
    We consider a number of graph kernels and proximity measures including commute time kernel, regularized Laplacian kernel, heat kernel, exponential diffusion kernel (also called "communicability"), etc., and the corresponding distances as applied to clustering nodes in random graphs and several well-known datasets. The model of generating random graphs involves edge probabilities for the pairs of nodes that belong to the same class or different predefined classes of nodes. It turns out that in most cases, logarithmic measures (i.e., measures resulting after taking logarithm of the proximities) perform better while distinguishing underlying classes than the "plain" measures. A comparison in terms of reject curves of inter-class and intra-class distances confirms this conclusion. A similar conclusion can be made for several well-known datasets. A possible origin of this effect is that most kernels have a multiplicative nature, while the nature of distances used in cluster algorithms is an additive one (cf. the triangle inequality). The logarithmic transformation is a tool to transform the first nature to the second one. Moreover, some distances corresponding to the logarithmic measures possess a meaningful cutpoint additivity property. In our experiments, the leader is usually the logarithmic Communicability measure. However, we indicate some more complicated cases in which other measures, typically, Communicability and plain Walk, can be the winners.Comment: 11 pages, 5 tables, 9 figures. Accepted for publication in the Proceedings of 6th International Conference on Network Analysis, May 26-28, 2016, Nizhny Novgorod, Russi

    Community Structure of the Physical Review Citation Network

    Full text link
    We investigate the community structure of physics subfields in the citation network of all Physical Review publications between 1893 and August 2007. We focus on well-cited publications (those receiving more than 100 citations), and apply modularity maximization to uncover major communities that correspond to clearly-identifiable subfields of physics. While most of the links between communities connect those with obvious intellectual overlap, there sometimes exist unexpected connections between disparate fields due to the development of a widely-applicable theoretical technique or by cross fertilization between theory and experiment. We also examine communities decade by decade and also uncover a small number of significant links between communities that are widely separated in time.Comment: 14 pages, 7 figures, 8 tables. Version 2: various small additions in response to referee comment

    Dynamic Bayesian Combination of Multiple Imperfect Classifiers

    Get PDF
    Classifier combination methods need to make best use of the outputs of multiple, imperfect classifiers to enable higher accuracy classifications. In many situations, such as when human decisions need to be combined, the base decisions can vary enormously in reliability. A Bayesian approach to such uncertain combination allows us to infer the differences in performance between individuals and to incorporate any available prior knowledge about their abilities when training data is sparse. In this paper we explore Bayesian classifier combination, using the computationally efficient framework of variational Bayesian inference. We apply the approach to real data from a large citizen science project, Galaxy Zoo Supernovae, and show that our method far outperforms other established approaches to imperfect decision combination. We go on to analyse the putative community structure of the decision makers, based on their inferred decision making strategies, and show that natural groupings are formed. Finally we present a dynamic Bayesian classifier combination approach and investigate the changes in base classifier performance over time.Comment: 35 pages, 12 figure
    • …
    corecore