2,381 research outputs found
POOL File Catalog, Collection and Metadata Components
The POOL project is the common persistency framework for the LHC experiments
to store petabytes of experiment data and metadata in a distributed and grid
enabled way. POOL is a hybrid event store consisting of a data streaming layer
and a relational layer. This paper describes the design of file catalog,
collection and metadata components which are not part of the data streaming
layer of POOL and outlines how POOL aims to provide transparent and efficient
data access for a wide range of environments and use cases - ranging from a
large production site down to a single disconnected laptops. The file catalog
is the central POOL component translating logical data references to physical
data files in a grid environment. POOL collections with their associated
metadata provide an abstract way of accessing experiment data via their logical
grouping into sets of related data objects.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 4 pages, 1 eps figure, PSN MOKT00
Implications of the ALEPH tau-Lepton Decay Data for Perturbative and Non-Perturbative QCD
We use ALEPH data on hadronic decays in order to calculate Euclidean
coordinate space correlation functions in the vector and axial-vector channels.
The linear combination receives no perturbative contribution and is
quantitatively reproduced by the instanton liquid model. In the case of
the instanton calculation is in good agreement with the data once perturbative
corrections are included. These corrections clearly show the evolution of
. We also analyze the range of validity of the Operator Product
Expansion (OPE). In the channel we find a dimension contribution
which is comparable to the original SVZ estimate, but the instanton model
provides a different non-singular term of the same magnitude. In the case
both the OPE and the instanton model predict the same power correction
induced by the gluon condensate, but it is masked by much larger perturbative
contributions. We conclude that the range of validity of the OPE is limited to
x\lsim0.3 fm, whereas the instanton model describes the data over the entire
range.Comment: 4 pages, 6 figure
HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation
Historically, high energy physics computing has been performed on large
purpose-built computing systems. These began as single-site compute facilities,
but have evolved into the distributed computing grids used today. Recently,
there has been an exponential increase in the capacity and capability of
commercial clouds. Cloud resources are highly virtualized and intended to be
able to be flexibly deployed for a variety of computing tasks. There is a
growing nterest among the cloud providers to demonstrate the capability to
perform large-scale scientific computing. In this paper, we discuss results
from the CMS experiment using the Fermilab HEPCloud facility, which utilized
both local Fermilab resources and virtual machines in the Amazon Web Services
Elastic Compute Cloud. We discuss the planning, technical challenges, and
lessons learned involved in performing physics workflows on a large-scale set
of virtualized resources. In addition, we will discuss the economics and
operational efficiencies when executing workflows both in the cloud and on
dedicated resources.Comment: 15 pages, 9 figure
Test of the Running of in Decays
The decay rate into hadrons of invariant mass smaller than
can be calculated in QCD assuming global
quark--hadron duality. It is shown that this assumption holds for
~GeV. From measurements of the hadronic mass distribution, the
running coupling constant is extracted in the range
0.7~GeV. At , the result is
. The running of is in good
agreement with the QCD prediction.Comment: 9 pages, 3 figures appended; shortened version with new figures, to
appear in Physical Review Letters (April 1996
IL-1 and senescence: Friends and foe of EGFR neutralization and immunotherapy
Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is characterized by morphological and metabolic changes, heterochromatin formation, and secretion of inflammatory components, known as senescence-associated secretory phenotype (SASP). However, recent reports demonstrated that anti-cancer therapy itself can stimulate a senescence response in tumor cells, the so-called therapy-induced senescence (TIS), which may represent a temporary bypass pathway that promotes drug resistance. In this context, several studies have shown that EGFR blockage, by TKIs or moAbs, promotes TIS by increasing IL-1 cytokine production, thus pushing cells into a "pseudo-senescent" state. Today, senotherapeutic agents are emerging as a potential strategy in cancer treatment thanks to their dual role in annihilating senescent cells and simultaneously preventing their awakening into a resistant and aggressive form. Here, we summarize classic and recent findings about the cellular processes driving senescence and SASP, and we provide a state-of-the-art of the anti-cancer strategies available so far that exploits the activation and/or blockade of senescence-based mechanisms
Climate variability during MIS 20–18 as recorded by alkenone-SST and calcareous plankton in the Ionian Basin (central Mediterranean)
This study shows the first Mediterranean high-resolution record of alkenone-derived sea surface temperature (SST) in the marine sediments outcropping at the Ideale section (IS) (southern Italy, central Mediterranean) from late marine isotope stage (MIS) 20 - through early MIS 18. The SST pattern evidences glacial-interglacial up to submillennial-scale temperature variation, with lower values (~13 °C) in late MIS 20 and substage 19b, and higher values (up to 21 °C) in MIS 19c and in the interstadials of MIS 19a. The SST data are combined with the new calcareous plankton analysis and the available, chronologically well-constrained carbon and oxygen isotope records in the IS. The multi-proxy approach, together with the location of the IS near the Italian coasts, the lower circalittoral-upper bathyal depositional setting, and high sedimentation rate allow to document long-and short-term paleoenvironmental modifications (sea level, rainfall, inorganic/organic/fresh water input to the basin), as a response to regional and global climate changes. The combined proxies reveal the occurrence of a terminal stadial event in late MIS 20 (here Med-HTIX), and warm-cold episodes (here Med-BATIX and Med-YDTIX) during Termination IX (TIX), which recall those that occurred through the last termination (TI). During these periods and the following ghost sapropel layer (insolation cycle 74, 784 ka) in the early MIS 19, high frequency internal changes are synchronously recorded by all proxies. The substage MIS 19c is warm but quite unstable, with several episodes of paleoenvironmental changes, associated with fluctuating tropical-subtropical water inflow through the Gibraltar Strait, variations of the cyclonic regime in the Ionian basin, and the southward shift of westerly winds and winter precipitation over southern Europe and Mediterranean basin. Three high-amplitude millennial-scale oscillations in the patterns of SST and calcareous plankton key taxa during MIS 19a are interpreted as linked to changes in temperature as well as in salinity due to periodical water column stratification and mixing. The main processes involved in the climate variability include changes in oceanographic exchanges through the Gibraltar Strait during modulations of Atlantic meridional overturning circulation and/or variations in atmospheric dynamics related to the influence of westerly and polar winds acting in the paleo-Ionian basin. A strong climate teleconnection between the North Atlantic and Mediterranean is discussed, and a prominent role of atmospheric processes in the central Mediterranean is evidenced by comparing data sets at the IS with Italian and extra-Mediterranean marine and terrestrial records
The Adler Function for Light Quarks in Analytic Perturbation Theory
The method of analytic perturbation theory, which avoids the problem of
ghost-pole type singularities and gives a self-consistent description of both
spacelike and timelike regions, is applied to describe the "light" Adler
function corresponding to the non-strange vector channel of the inclusive decay
of the lepton. The role of threshold effects is investigated. The
behavior of the quark-antiquark system near threshold is described by using a
new relativistic resummation factor. It is shown that the method proposed leads
to good agreement with the ``experimental'' Adler function down to the lowest
energy scale.Comment: 13 pages, one ps figure, REVTe
Testing QCD with Hypothetical Tau Leptons
We construct new tests of perturbative QCD by considering a hypothetical tau
lepton of arbitrary mass, which decays hadronically through the electromagnetic
current. We can explicitly compute its hadronic width ratio directly as an
integral over the e^+ e^- annihilation cross section ratio, R_{e^+e^-}.
Furthermore, we can design a set of commensurate scale relations and
perturbative QCD tests by varying the weight function away from the form
associated with the V-A decay of the physical tau. This method allows the wide
range of the R_{e^+e^-} data to be used as a probe of perturbative QCD.Comment: 4 pages, 4 figure
The RIG-I agonist M8 triggers cell death and natural killer cell activation in human papillomavirus-associated cancer and potentiates cisplatin cytotoxicity
Although the activation of innate immunity to treat a wide variety of cancers is gaining increasing attention, it has been poorly investigated in human papillomavirus (HPV)-associated malignancies. Because these tumors harbor a severely impaired cGAS-STING axis, but they still retain a largely functional RIG-I pathway, another critical mediator of adaptive and innate immune responses, we asked whether RIG-I activation by the 5'ppp-RNA RIG-I agonist M8 would represent a therapeutically viable option to treat HPV+ cancers. Here, we show that M8 transfection of two cervical carcinoma-derived cell lines, CaSki and HeLa, both expressing a functional RIG-I, triggers intrinsic apoptotic cell death, which is significantly reduced in RIG-I KO cells. We also demonstrate that M8 stimulation potentiates cisplatin-mediated cell killing of HPV+ cells in a RIG-I dependent manner. This combination treatment is equally effective in reducing tumor growth in a syngeneic pre-clinical mouse model of HPV16-driven cancer, where enhanced expression of lymphocyte-recruiting chemokines and cytokines correlated with an increased number of activated natural killer (NK) cells in the tumor microenvironment. Consistent with a role of RIG-I signaling in immunogenic cell killing, stimulation of NK cells with conditioned medium from M8-transfected CaSki boosted NK cell proliferation, activation, and migration in a RIG-I-dependent tumor cell-intrinsic manner. Given the highly conserved molecular mechanisms of carcinogenesis and genomic features of HPV-driven cancers and the remarkably improved prognosis for HPV+ oropharyngeal cancer, targeting RIG-I may represent an effective immunotherapeutic strategy in this setting, favoring the development of de-escalating strategies
Optimal Renormalization Scale and Scheme for Exclusive Processes
We use the BLM method to fix the renormalization scale of the QCD coupling in
exclusive hadronic amplitudes such as the pion form factor and the
photon-to-pion transition form factor at large momentum transfer.
Renormalization-scheme-independent commensurate scale relations are established
which connect the hard scattering subprocess amplitudes that control exclusive
processes to other QCD observables such as the heavy quark potential and the
electron-positron annihilation cross section. The commensurate scale relation
connecting the heavy quark potential, as determined from lattice gauge theory,
to the photon-to-pion transition form factor is in excellent agreement with
data assuming that the pion distribution amplitude is
close to its asymptotic form . We also reproduce the
scaling and normalization of the data at large
momentum transfer. Because the renormalization scale is small, we argue that
the effective coupling is nearly constant, thus accounting for the nominal
scaling behavior of the data. However, the normalization of the space-like pion
form factor obtained from electroproduction experiments is
somewhat higher than that predicted by the corresponding commensurate scale
relation. This discrepancy may be due to systematic errors introduced by the
extrapolation of the electroproduction data to the
pion pole.Comment: 22 pages, Latex, 7 Latex figures. Several references added,
discussion of scale fixing revised for clarity. Final version to appear in
Phys. Rev.
- …