2,381 research outputs found

    POOL File Catalog, Collection and Metadata Components

    Full text link
    The POOL project is the common persistency framework for the LHC experiments to store petabytes of experiment data and metadata in a distributed and grid enabled way. POOL is a hybrid event store consisting of a data streaming layer and a relational layer. This paper describes the design of file catalog, collection and metadata components which are not part of the data streaming layer of POOL and outlines how POOL aims to provide transparent and efficient data access for a wide range of environments and use cases - ranging from a large production site down to a single disconnected laptops. The file catalog is the central POOL component translating logical data references to physical data files in a grid environment. POOL collections with their associated metadata provide an abstract way of accessing experiment data via their logical grouping into sets of related data objects.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 4 pages, 1 eps figure, PSN MOKT00

    Implications of the ALEPH tau-Lepton Decay Data for Perturbative and Non-Perturbative QCD

    Get PDF
    We use ALEPH data on hadronic τ\tau decays in order to calculate Euclidean coordinate space correlation functions in the vector and axial-vector channels. The linear combination VAV-A receives no perturbative contribution and is quantitatively reproduced by the instanton liquid model. In the case of V+AV+A the instanton calculation is in good agreement with the data once perturbative corrections are included. These corrections clearly show the evolution of αs\alpha_s. We also analyze the range of validity of the Operator Product Expansion (OPE). In the VAV-A channel we find a dimension d=6d=6 contribution which is comparable to the original SVZ estimate, but the instanton model provides a different non-singular term of the same magnitude. In the V+AV+A case both the OPE and the instanton model predict the same d=4d=4 power correction induced by the gluon condensate, but it is masked by much larger perturbative contributions. We conclude that the range of validity of the OPE is limited to x\lsim0.3 fm, whereas the instanton model describes the data over the entire range.Comment: 4 pages, 6 figure

    HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    Full text link
    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing nterest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized both local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. In addition, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.Comment: 15 pages, 9 figure

    Test of the Running of αs\alpha_s in τ\tau Decays

    Full text link
    The τ\tau decay rate into hadrons of invariant mass smaller than s0ΛQCD\sqrt{s_0}\gg\Lambda_{\rm QCD} can be calculated in QCD assuming global quark--hadron duality. It is shown that this assumption holds for s0>0.7s_0>0.7~GeV2^2. From measurements of the hadronic mass distribution, the running coupling constant αs(s0)\alpha_s(s_0) is extracted in the range 0.7~GeV2<s0<mτ2^2<s_0<m_\tau^2. At s0=mτ2s_0=m_\tau^2, the result is αs(mτ2)=0.329±0.030\alpha_s(m_\tau^2)=0.329\pm 0.030. The running of αs\alpha_s is in good agreement with the QCD prediction.Comment: 9 pages, 3 figures appended; shortened version with new figures, to appear in Physical Review Letters (April 1996

    IL-1 and senescence: Friends and foe of EGFR neutralization and immunotherapy

    Get PDF
    Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is characterized by morphological and metabolic changes, heterochromatin formation, and secretion of inflammatory components, known as senescence-associated secretory phenotype (SASP). However, recent reports demonstrated that anti-cancer therapy itself can stimulate a senescence response in tumor cells, the so-called therapy-induced senescence (TIS), which may represent a temporary bypass pathway that promotes drug resistance. In this context, several studies have shown that EGFR blockage, by TKIs or moAbs, promotes TIS by increasing IL-1 cytokine production, thus pushing cells into a "pseudo-senescent" state. Today, senotherapeutic agents are emerging as a potential strategy in cancer treatment thanks to their dual role in annihilating senescent cells and simultaneously preventing their awakening into a resistant and aggressive form. Here, we summarize classic and recent findings about the cellular processes driving senescence and SASP, and we provide a state-of-the-art of the anti-cancer strategies available so far that exploits the activation and/or blockade of senescence-based mechanisms

    Climate variability during MIS 20–18 as recorded by alkenone-SST and calcareous plankton in the Ionian Basin (central Mediterranean)

    Get PDF
    This study shows the first Mediterranean high-resolution record of alkenone-derived sea surface temperature (SST) in the marine sediments outcropping at the Ideale section (IS) (southern Italy, central Mediterranean) from late marine isotope stage (MIS) 20 - through early MIS 18. The SST pattern evidences glacial-interglacial up to submillennial-scale temperature variation, with lower values (~13 °C) in late MIS 20 and substage 19b, and higher values (up to 21 °C) in MIS 19c and in the interstadials of MIS 19a. The SST data are combined with the new calcareous plankton analysis and the available, chronologically well-constrained carbon and oxygen isotope records in the IS. The multi-proxy approach, together with the location of the IS near the Italian coasts, the lower circalittoral-upper bathyal depositional setting, and high sedimentation rate allow to document long-and short-term paleoenvironmental modifications (sea level, rainfall, inorganic/organic/fresh water input to the basin), as a response to regional and global climate changes. The combined proxies reveal the occurrence of a terminal stadial event in late MIS 20 (here Med-HTIX), and warm-cold episodes (here Med-BATIX and Med-YDTIX) during Termination IX (TIX), which recall those that occurred through the last termination (TI). During these periods and the following ghost sapropel layer (insolation cycle 74, 784 ka) in the early MIS 19, high frequency internal changes are synchronously recorded by all proxies. The substage MIS 19c is warm but quite unstable, with several episodes of paleoenvironmental changes, associated with fluctuating tropical-subtropical water inflow through the Gibraltar Strait, variations of the cyclonic regime in the Ionian basin, and the southward shift of westerly winds and winter precipitation over southern Europe and Mediterranean basin. Three high-amplitude millennial-scale oscillations in the patterns of SST and calcareous plankton key taxa during MIS 19a are interpreted as linked to changes in temperature as well as in salinity due to periodical water column stratification and mixing. The main processes involved in the climate variability include changes in oceanographic exchanges through the Gibraltar Strait during modulations of Atlantic meridional overturning circulation and/or variations in atmospheric dynamics related to the influence of westerly and polar winds acting in the paleo-Ionian basin. A strong climate teleconnection between the North Atlantic and Mediterranean is discussed, and a prominent role of atmospheric processes in the central Mediterranean is evidenced by comparing data sets at the IS with Italian and extra-Mediterranean marine and terrestrial records

    The Adler Function for Light Quarks in Analytic Perturbation Theory

    Full text link
    The method of analytic perturbation theory, which avoids the problem of ghost-pole type singularities and gives a self-consistent description of both spacelike and timelike regions, is applied to describe the "light" Adler function corresponding to the non-strange vector channel of the inclusive decay of the τ\tau lepton. The role of threshold effects is investigated. The behavior of the quark-antiquark system near threshold is described by using a new relativistic resummation factor. It is shown that the method proposed leads to good agreement with the ``experimental'' Adler function down to the lowest energy scale.Comment: 13 pages, one ps figure, REVTe

    Testing QCD with Hypothetical Tau Leptons

    Get PDF
    We construct new tests of perturbative QCD by considering a hypothetical tau lepton of arbitrary mass, which decays hadronically through the electromagnetic current. We can explicitly compute its hadronic width ratio directly as an integral over the e^+ e^- annihilation cross section ratio, R_{e^+e^-}. Furthermore, we can design a set of commensurate scale relations and perturbative QCD tests by varying the weight function away from the form associated with the V-A decay of the physical tau. This method allows the wide range of the R_{e^+e^-} data to be used as a probe of perturbative QCD.Comment: 4 pages, 4 figure

    The RIG-I agonist M8 triggers cell death and natural killer cell activation in human papillomavirus-associated cancer and potentiates cisplatin cytotoxicity

    Get PDF
    Although the activation of innate immunity to treat a wide variety of cancers is gaining increasing attention, it has been poorly investigated in human papillomavirus (HPV)-associated malignancies. Because these tumors harbor a severely impaired cGAS-STING axis, but they still retain a largely functional RIG-I pathway, another critical mediator of adaptive and innate immune responses, we asked whether RIG-I activation by the 5'ppp-RNA RIG-I agonist M8 would represent a therapeutically viable option to treat HPV+ cancers. Here, we show that M8 transfection of two cervical carcinoma-derived cell lines, CaSki and HeLa, both expressing a functional RIG-I, triggers intrinsic apoptotic cell death, which is significantly reduced in RIG-I KO cells. We also demonstrate that M8 stimulation potentiates cisplatin-mediated cell killing of HPV+ cells in a RIG-I dependent manner. This combination treatment is equally effective in reducing tumor growth in a syngeneic pre-clinical mouse model of HPV16-driven cancer, where enhanced expression of lymphocyte-recruiting chemokines and cytokines correlated with an increased number of activated natural killer (NK) cells in the tumor microenvironment. Consistent with a role of RIG-I signaling in immunogenic cell killing, stimulation of NK cells with conditioned medium from M8-transfected CaSki boosted NK cell proliferation, activation, and migration in a RIG-I-dependent tumor cell-intrinsic manner. Given the highly conserved molecular mechanisms of carcinogenesis and genomic features of HPV-driven cancers and the remarkably improved prognosis for HPV+ oropharyngeal cancer, targeting RIG-I may represent an effective immunotherapeutic strategy in this setting, favoring the development of de-escalating strategies

    Optimal Renormalization Scale and Scheme for Exclusive Processes

    Get PDF
    We use the BLM method to fix the renormalization scale of the QCD coupling in exclusive hadronic amplitudes such as the pion form factor and the photon-to-pion transition form factor at large momentum transfer. Renormalization-scheme-independent commensurate scale relations are established which connect the hard scattering subprocess amplitudes that control exclusive processes to other QCD observables such as the heavy quark potential and the electron-positron annihilation cross section. The commensurate scale relation connecting the heavy quark potential, as determined from lattice gauge theory, to the photon-to-pion transition form factor is in excellent agreement with γeπ0e\gamma e \to \pi^0 e data assuming that the pion distribution amplitude is close to its asymptotic form 3fπx(1x)\sqrt{3}f_\pi x(1-x). We also reproduce the scaling and normalization of the γγπ+π\gamma \gamma \to \pi^+ \pi^- data at large momentum transfer. Because the renormalization scale is small, we argue that the effective coupling is nearly constant, thus accounting for the nominal scaling behavior of the data. However, the normalization of the space-like pion form factor Fπ(Q2)F_\pi(Q^2) obtained from electroproduction experiments is somewhat higher than that predicted by the corresponding commensurate scale relation. This discrepancy may be due to systematic errors introduced by the extrapolation of the γpπ+n\gamma^* p \to \pi^+ n electroproduction data to the pion pole.Comment: 22 pages, Latex, 7 Latex figures. Several references added, discussion of scale fixing revised for clarity. Final version to appear in Phys. Rev.
    corecore