2,049 research outputs found

    Hierarchic Bayesian models for kernel learning

    Get PDF
    The integration of diverse forms of informative data by learning an optimal combination of base kernels in classification or regression problems can provide enhanced performance when compared to that obtained from any single data source. We present a Bayesian hierarchical model which enables kernel learning and present effective variational Bayes estimators for regression and classification. Illustrative experiments demonstrate the utility of the proposed method

    Variational Bayesian multinomial probit regression with Gaussian process priors

    Get PDF
    It is well known in the statistics literature that augmenting binary and polychotomous response models with Gaussian latent variables enables exact Bayesian analysis via Gibbs sampling from the parameter posterior. By adopting such a data augmentation strategy, dispensing with priors over regression coefficients in favour of Gaussian Process (GP) priors over functions, and employing variational approximations to the full posterior we obtain efficient computational methods for Gaussian Process classification in the multi-class setting. The model augmentation with additional latent variables ensures full a posteriori class coupling whilst retaining the simple a priori independent GP covariance structure from which sparse approximations, such as multi-class Informative Vector Machines (IVM), emerge in a very natural and straightforward manner. This is the first time that a fully Variational Bayesian treatment for multi-class GP classification has been developed without having to resort to additional explicit approximations to the non-Gaussian likelihood term. Empirical comparisons with exact analysis via MCMC and Laplace approximations illustrate the utility of the variational approximation as a computationally economic alternative to full MCMC and it is shown to be more accurate than the Laplace approximation

    Probabilistic hyperspace analogue to language

    Get PDF
    Song and Bruza introduce a framework for Information Retrieval(IR) based on Gardenfor's three tiered cognitive model; Conceptual Spaces. They instantiate a conceptual space using Hyperspace Analogue to Language (HAL to generate higher order concepts which are later used for ad-hoc retrieval. In this poster, we propose an alternative implementation of the conceptual space by using a probabilistic HAL space (pHAL). To evaluate whether converting to such an implementation is beneficial we have performed an initial investigation comparing the concept combination of HAL against pHAL for the task of query expansion. Our experiments indicate that pHAL outperforms the original HAL method and that better query term selection methods can improve performance on both HAL and pHAL

    Semi-parametric analysis of multi-rater data

    Get PDF
    Datasets that are subjectively labeled by a number of experts are becoming more common in tasks such as biological text annotation where class definitions are necessarily somewhat subjective. Standard classification and regression models are not suited to multiple labels and typically a pre-processing step (normally assigning the majority class) is performed. We propose Bayesian models for classification and ordinal regression that naturally incorporate multiple expert opinions in defining predictive distributions. The models make use of Gaussian process priors, resulting in great flexibility and particular suitability to text based problems where the number of covariates can be far greater than the number of data instances. We show that using all labels rather than just the majority improves performance on a recent biological dataset

    Topic based language models for ad hoc information retrieval

    Get PDF
    We propose a topic based approach lo language modelling for ad-hoc Information Retrieval (IR). Many smoothed estimators used for the multinomial query model in IR rely upon the estimated background collection probabilities. In this paper, we propose a topic based language modelling approach, that uses a more informative prior based on the topical content of a document. In our experiments, the proposed model provides comparable IR performance to the standard models, but when combined in a two stage language model, it outperforms all other estimated models

    Investigating the relationship between language model perplexity and IR precision-recall measures

    Get PDF
    An empirical study has been conducted investigating the relationship between the performance of an aspect based language model in terms of perplexity and the corresponding information retrieval performance obtained. It is observed, on the corpora considered, that the perplexity of the language model has a systematic relationship with the achievable precision recall performance though it is not statistically significant

    Clustering via kernel decomposition

    Get PDF
    Spectral clustering methods were proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this letter, the affinity matrix is created from the elements of a nonparametric density estimator and then decomposed to obtain posterior probabilities of class membership. Hyperparameters are selected using standard cross-validation methods

    Quantum discord for general two--qubit states: Analytical progress

    Full text link
    We present a reliable algorithm to evaluate quantum discord for general two--qubit states, amending and extending an approach recently put forward for the subclass of X--states. A closed expression for the discord of arbitrary states of two qubits cannot be obtained, as the optimization problem for the conditional entropy requires the solution to a pair of transcendental equations in the state parameters. We apply our algorithm to run a numerical comparison between quantum discord and an alternative, computable measure of non-classical correlations, namely the geometric discord. We identify the extremally non-classically correlated two--qubit states according to the (normalized) geometric discord, at fixed value of the conventional quantum discord. The latter cannot exceed the square root of the former for systems of two qubits.Comment: 8 pages, 2 figure

    The latent process decomposition of cDNA microarray data sets

    Get PDF
    We present a new computational technique (a software implementation, data sets, and supplementary information are available at http://www.enm.bris.ac.uk/lpd/) which enables the probabilistic analysis of cDNA microarray data and we demonstrate its effectiveness in identifying features of biomedical importance. A hierarchical Bayesian model, called latent process decomposition (LPD), is introduced in which each sample in the data set is represented as a combinatorial mixture over a finite set of latent processes, which are expected to correspond to biological processes. Parameters in the model are estimated using efficient variational methods. This type of probabilistic model is most appropriate for the interpretation of measurement data generated by cDNA microarray technology. For determining informative substructure in such data sets, the proposed model has several important advantages over the standard use of dendrograms. First, the ability to objectively assess the optimal number of sample clusters. Second, the ability to represent samples and gene expression levels using a common set of latent variables (dendrograms cluster samples and gene expression values separately which amounts to two distinct reduced space representations). Third, in contrast to standard cluster models, observations are not assigned to a single cluster and, thus, for example, gene expression levels are modeled via combinations of the latent processes identified by the algorithm. We show this new method compares favorably with alternative cluster analysis methods. To illustrate its potential, we apply the proposed technique to several microarray data sets for cancer. For these data sets it successfully decomposes the data into known subtypes and indicates possible further taxonomic subdivision in addition to highlighting, in a wholly unsupervised manner, the importance of certain genes which are known to be medically significant. To illustrate its wider applicability, we also illustrate its performance on a microarray data set for yeast
    corecore