131 research outputs found

    Volcanoes and their hazard to aviation

    Get PDF
    In March 2013, the Kamchatkan Volcanic Eruption Response Team (KVERT) celebrated the 20th anniversary of its activity. This team, which was created by the joint efforts of Russian and American scientists, analyzes on a daily basis the data supplied by the complex (seismic, video, visual, and satellite) monitoring system of volcanoes of Kamchatka and the Northern Kuril Islands to notify airline companies and all interested organizations about potential hazards

    The active volcanoes of Kamchatka and Paramushir Island, North Kurils in 2007

    Get PDF
    Eight strong eruptions of four Kamchatka volcanoes (Bezymyannyi, Klyuchevskoi, Shiveluch, and Karymskii) and Chikurachki Volcano on Paramushir Island, North Kurils took place in 2007. In addition, an explosive event occurred on Mutnovskii Volcano and increased fumarole activity was recorded on Avacha and Gorelyi volcanoes in Kamchatka and Ebeko Volcano on Paramushir Island, North Kurils. Thanks to close cooperation with colleagues involved in the Kamchatkan Volcanic Eruption Response Team (KVERT) project from the Elizovo Airport Meteorological Center and volcanic ash advisory centers in Tokyo, Anchorage, and Washington (Tokyo VAAC, Anchorage VAAC, and Washington VAAC), all necessary precautions were taken for flight safety near Kamchatka

    Monitoring the Thermal Activity of Kamchatkan Volcanoes during 2015–2022 Using Remote Sensing

    Get PDF
    The powerful explosive eruptions with large volumes of volcanic ash pose a great danger to the population and jet aircraft. Global experience in monitoring volcanoes and observing changes in the parameters of their thermal anomalies is successfully used to analyze the activity of volcanoes and predict their danger to the population. The Kamchatka Peninsula in Russia, with its 30 active volcanoes, is one of the most volcanically active regions in the world. The article considers the thermal activity in 2015–2022 of the Klyuchevskoy, Sheveluch, Bezymianny, and Karymsky volcanoes, whose rock composition varies from basaltic andesite to dacite. This study is based on the analysis of the Value of Temperature Difference between the thermal Anomaly and the Background (the VTDAB), obtained by manual processing of the AVHRR, MODIS, VIIRS, and MSU-MR satellite data in the VolSatView information system. Based on the VTDAB data, the following “background activity of the volcanoes” was determined: 20 °C for Sheveluch and Bezymianny, 12 °C for Klyuchevskoy, and 13–15 °C for Karymsky. This study showed that the highest temperature of the thermal anomaly corresponds to the juvenile magmatic material that arrived on the earth’s surface. The highest VTDAB is different for each volcano; it depends on the composition of the eruptive products produced by the volcano and on the character of an eruption. A joint analysis of the dynamics of the eruption of each volcano and changes in its thermal activity made it possible to determine the range of the VTDAB for different phases of a volcanic eruption

    First Historical Eruption of Kambalny Volcano

    Get PDF
    The first historical eruption of Kambalny volcano began on March 24, 2017 with the powerful ash emission from the summit crater reaching as high as 6 km above sea level. The explosive activity continued without interruption from March 24 to March 30. The most powerful ash emission was registered on March 25–26, when the ash plume drifted several thousand kilometers SW, S, and SE from the volcano. On April 2 and April 9, after several calm days, powerful ash explosions occurred generating ash plumes up to 7 km high. The area of the land and sea over which the ash plume drifted during the day of March 25, was 650000 km2; the area of the ash accumulation on the land that was formed from March 24 to April 9, exceeded 1500 km2. These parameters were measured using the satellite-based data in the VolSatView information system. Domination of the silty fraction and the presence of secondary minerals (pyrite, gypsum, sulfur, and others) in the ash point to the phreatic character of the volcanic eruption

    Information Technologies for the Analyzing of Kamchatka and the Kuril Islands Volcanoes Activity in 2019-2020

    Get PDF
    The work is devoted to the activity analysis of Kamchatka and the Kuril Islands volcanoes in 2019-2020.The activity of the volcanoes was estimated based on the processing of data from daily satellite monitoring carried out using the information system “Remote monitoring of Kamchatkan and the Kuriles volcanoes activity (VolSatView)”. The activity of the Kamchatka and the Kuril Islands volcanoes considered based on the analysis of their thermal anomalies. Analysis of the characteristics of thermal anomalies over volcanoes was carried out in KVERT IS. Analysis of the temperature of thermal anomalies of volcanoes in the Kuril - Kamchatka region in 2019-2020 shows a significantly higher activity of the Kamchatka volcanoes in comparison with the Kuril volcanoes
    corecore